SubChlo

SubChlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm. The chloroplast is a type of plant specific subcellular organelle. It is of central importance in several biological processes like photosynthesis and amino acid biosynthesis. Thus, understanding the function of chloroplast proteins is of significant value. Since the function of chloroplast proteins correlates with their subchloroplast locations, the knowledge of their subchloroplast locations can be very helpful in understanding their role in the biological processes. In the current paper, by introducing the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm, we developed a method for predicting the protein subchloroplast locations. This is the first algorithm for predicting the protein subchloroplast locations. We have implemented our algorithm as an online service, SubChlo (http://bioinfo.au.tsinghua.edu.cn/subchlo). This service may be useful to the chloroplast proteome research.


References in zbMATH (referenced in 11 articles , 1 standard article )

Showing results 1 to 11 of 11.
Sorted by year (citations)

  1. Zhao, Wei; Li, Guang-Ping; Wang, Jun; Zhou, Yuan-Ke; Gao, Yang; Du, Pu-Feng: Predicting protein sub-Golgi locations by combining functional domain enrichment scores with pseudo-amino acid compositions (2019)
  2. Jiao, Ya-Sen; Du, Pu-Feng: Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection (2016)
  3. Jiao, Ya-Sen; Du, Pu-Feng: Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties (2016)
  4. Li, Xiaomei; Wu, Xindong; Wu, Gongqing: Robust feature generation for protein subchloroplast location prediction with a weighted GO transfer model (2014)
  5. Huang, Chao; Yuan, Jing-Qi: Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou’s pseudo amino acid compositions (2013)
  6. Yu, Chenglong; Deng, Mo; Cheng, Shiu-Yuen; Yau, Shek-Chung; He, Rong L.; Yau, Stephen S.-T.: Protein space: a natural method for realizing the nature of protein universe (2013)
  7. Mei, Suyu: Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning (2012)
  8. Yang, Lianping; Zhang, Xiangde; Zhu, Hegui: Alignment free comparison: similarity distribution between the DNA primary sequences based on the shortest absent word (2012)
  9. Chou, Kuo-Chen: Some remarks on protein attribute prediction and pseudo amino acid composition (2011)
  10. Xiao, Xuan; Wu, Zhi-Cheng; Chou, Kuo-Chen: \textbfiLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites (2011)
  11. Du, Pufeng; Cao, Shengjiao; Li, Yanda: SubChlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic (K)-nearest neighbor (ET-KNN) algorithm (2009)