References in zbMATH (referenced in 31 articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Birkedal, Lars; Clouston, Ranald; Mannaa, Bassel; Ejlers Møgelberg, Rasmus; Pitts, Andrew M.; Spitters, Bas: Modal dependent type theory and dependent right adjoints (2020)
  2. Buchholtz, Ulrik; Hou, Kuen-Bang: Cellular cohomology in homotopy type theory (2020)
  3. Ahrens, Benedikt; Matthes, Ralph; Mörtberg, Anders: From signatures to Monads in \textsfUniMath (2019)
  4. Bezem, Marc; Coquand, Thierry; Huber, Simon: The univalence axiom in cubical sets (2019)
  5. Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald; Grathwohl, Hans Bugge; Spitters, Bas; Vezzosi, Andrea: Guarded cubical type theory (2019)
  6. Coquand, Thierry: Canonicity and normalization for dependent type theory (2019)
  7. Huber, Simon: Canonicity for cubical type theory (2019)
  8. Kapulkin, Krzysztof; Lindsey, Zachery; Wong, Liang Ze: A co-reflection of cubical sets into simplicial sets with applications to model structures (2019)
  9. Orton, Ian; Pitts, Andrew M.: Models of type theory based on Moore paths (2019)
  10. Romero, Ana; Rubio, Julio; Sergeraert, Francis: An implementation of effective homotopy of fibrations (2019)
  11. White, David; Yau, Donald: Arrow categories of monoidal model categories (2019)
  12. Altenkirch, Thorsten; Kaposi, Ambrus: Towards a cubical type theory without an interval (2018)
  13. Angiuli, Carlo; Harper, Robert: Meaning explanations at higher dimension (2018)
  14. Awodey, Steve: A cubical model of homotopy type theory (2018)
  15. Brown, Ronald: Modelling and computing homotopy types: I (2018)
  16. Buchholtz, Ulrik; Rijke, Egbert: The Cayley-Dickson construction in homotopy type theory (2018)
  17. Cohen, Cyril; Coquand, Thierry; Huber, Simon; Mörtberg, Anders: Cubical type theory: a constructive interpretation of the univalence axiom (2018)
  18. Coquand, Thierry: Combinatorial topology and constructive mathematics (2018)
  19. Grayson, Daniel R.: An introduction to univalent foundations for mathematicians (2018)
  20. Orton, Ian; Pitts, Andrew M.: Axioms for modelling cubical type theory in a topos (2018)

1 2 next