An implementation of the Gillespie algorithm for RNA kinetics with logarithmic time update. In this paper I outline a fast method called KFOLD for implementing the Gillepie algorithm to stochastically sample the folding kinetics of an RNA molecule at single base-pair resolution. In the same fashion as the KINFOLD algorithm, which also uses the Gillespie algorithm to predict folding kinetics, KFOLD stochastically chooses a new RNA secondary structure state that is accessible from the current state by a single base-pair addition/deletion following the Gillespie procedure. However, unlike KINFOLD, the KFOLD algorithm utilizes the fact that many of the base-pair addition/deletion reactions and their corresponding rates do not change between each step in the algorithm. This allows KFOLD to achieve a substantial speed-up in the time required to compute a prediction of the folding pathway and, for a fixed number of base-pair moves, performs logarithmically with sequence size. This increase in speed opens up the possibility of studying the kinetics of much longer RNA sequences at single base-pair resolution while also allowing for the RNA folding statistics of smaller RNA sequences to be computed much more quickly.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Clote, Peter; Bayegan, Amir H.: RNA folding kinetics using Monte Carlo and Gillespie algorithms (2018)