iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Carbonylation is a posttranslational modification (PTM or PTLM), where a carbonyl group is added to lysine (K), proline (P), arginine (R), and threonine (T) residue of a protein molecule. Carbonylation plays an important role in orchestrating various biological processes but it is also associated with many diseases such as diabetes, chronic lung disease, Parkinson’s disease, Alzheimer’s disease, chronic renal failure, and sepsis. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of K, P, R, or T, which ones can be carbonylated, and which ones cannot? To address this problem, we have developed a predictor called iCar-PseCp by incorporating the sequence-coupled information into the general pseudo amino acid composition, and balancing out skewed training dataset by Monte Carlo sampling to expand positive subset. Rigorous target cross-validations on a same set of carbonylation-known proteins indicated that the new predictor remarkably outperformed its existing counterparts. For the convenience of most experimental scientists, a user-friendly web-server for iCar-PseCp has been established at http://www.jci-bioinfo.cn/iCar-PseCp, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can also be used to analyze many other problems in computational proteomics.

References in zbMATH (referenced in 18 articles )

Showing results 1 to 18 of 18.
Sorted by year (citations)

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  5. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  6. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  7. Zhao, Wei; Li, Guang-Ping; Wang, Jun; Zhou, Yuan-Ke; Gao, Yang; Du, Pu-Feng: Predicting protein sub-Golgi locations by combining functional domain enrichment scores with pseudo-amino acid compositions (2019)
  8. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  9. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  10. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  11. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  12. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  13. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)
  14. Goede, Simon L.; de Galan, Bastiaan E.; Leow, Melvin Khee Shing: Personalized glucose-insulin model based on signal analysis (2017)
  15. Khan, Muslim; Hayat, Maqsood; Khan, Sher Afzal; Ahmad, Saeed; Iqbal, Nadeem: Bi-PSSM: position specific scoring matrix based intelligent computational model for identification of mycobacterial membrane proteins (2017)
  16. Pai, Priyadarshini P.; Dash, Tirtharaj; Mondal, Sukanta: Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach (2017)
  17. Zhai, Jing-Xuan; Cao, Tian-Jie; An, Ji-Yong; Bian, Yong-Tao: Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC (2017)
  18. Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Lv, Yingli: Characterization of BioPlex network by topological properties (2016)