iRNA-PseColl

iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC. There are many different types of RNA modifications, which are essential for numerous biological processes. Knowledge about the occurrence sites of RNA modifications in its sequence is a key for in-depth understanding of their biological functions and mechanism. Unfortunately, it is both time-consuming and laborious to determine these sites purely by experiments alone. Although some computational methods were developed in this regard, each one could only be used to deal with some type of modification individually. To our knowledge, no method has thus far been developed that can identify the occurrence sites for several different types of RNA modifications with one seamless package or platform. To address such a challenge, a novel platform called ”iRNA-PseColl” has been developed. It was formed by incorporating both the individual and collective features of the sequence elements into the general pseudo K-tuple nucleotide composition (PseKNC) of RNA via the chemicophysical properties and density distribution of its constituent nucleotides. Rigorous cross-validations have indicated that the anticipated success rates achieved by the proposed platform are quite high. To maximize the convenience for most experimental biologists, the platform’s web-server has been provided at http://lin.uestc.edu.cn/server/iRNA-PseColl along with a step-by-step user guide that will allow users to easily achieve their desired results without the need to go through the mathematical details involved in this paper.


References in zbMATH (referenced in 30 articles )

Showing results 1 to 20 of 30.
Sorted by year (citations)

1 2 next

  1. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  2. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  3. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  4. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  5. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  6. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  7. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  8. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  9. Rout, Subhashree; Mahapatra, Rajani Kanta: \textitInsilico analysis of \textitplasmodiumfalciparum CDPK5 protein through molecular modeling, docking and dynamics (2019)
  10. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  11. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  12. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  13. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  14. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  15. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  16. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  17. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  18. Ju, Zhe; Wang, Shi-Yun: Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm (2018)
  19. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  20. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)

1 2 next