iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Recommended by the World Health Organization (WHO), drug compounds have been classified into 14 main ATC (Anatomical Therapeutic Chemical) classes according to their therapeutic and chemical characteristics. Given an uncharacterized compound, can we develop a computational method to fast identify which ATC class or classes it belongs to? The information thus obtained will timely help adjusting our focus and selection, significantly speeding up the drug development process. But this problem is by no means an easy one since some drug compounds may belong to two or more than two ATC classes. To address this problem, using the DO (Drug Ontology) approach based on the ChEBI (Chemical Entities of Biological Interest) database, we developed a predictor called iATC-mDO. Subsequently, hybridizing it with an existing drug ATC classifier, we constructed a predictor called iATC-mHyb. It has been demonstrated by the rigorous cross-validation and from five different measuring angles that iATC-mHyb is remarkably superior to the best existing predictor in identifying the ATC classes for drug compounds. To convenience most experimental scientists, a user-friendly web-server for iATC-mHyd has been established at http://www.jci-bioinfo.cn/iATC-mHyb, by which users can easily get their desired results without the need to go through the complicated mathematical equations involved.

References in zbMATH (referenced in 21 articles )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  2. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  3. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  4. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  5. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  6. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  7. Rout, Subhashree; Mahapatra, Rajani Kanta: \textitInsilico analysis of \textitplasmodiumfalciparum CDPK5 protein through molecular modeling, docking and dynamics (2019)
  8. Shen, Yinan; Tang, Jijun; Guo, Fei: Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC (2019)
  9. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  10. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  11. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  12. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  13. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  14. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  15. Qiu, Wenying; Li, Shan; Cui, Xiaowen; Yu, Zhaomin; Wang, Minghui; Du, Junwei; Peng, Yanjun; Yu, Bin: Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition (2018)
  16. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)
  17. Sankari, E. Siva; Manimegalai, D.: Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC (2018)
  18. Srivastava, Abhishikha; Kumar, Ravindra; Kumar, Manish: BlaPred: predicting and classifying (\beta)-lactamase using a 3-tier prediction system via Chou’s general PseAAC (2018)
  19. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)
  20. Saghapour, Ehsan; Sehhati, Mohammadreza: Prediction of metastasis in advanced colorectal carcinomas using CGH data (2017)

1 2 next