HELAC-NLO. Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program that is capable of numerically evaluating QCD virtual corrections to scattering amplitudes. A detailed presentation of the algorithm is given, along with instructions to run the code and benchmark results. The program is part of the HELAC-NLO framework that allows for a complete evaluation of QCD NLO corrections.

References in zbMATH (referenced in 21 articles )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao: Syzygies probing scattering amplitudes (2016)
  2. Hirschi, Valentin; Peraro, Tiziano: Tensor integrand reduction via Laurent expansion (2016)
  3. Kotko, P.; Serino, M.; Stasto, A. M.: Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope (2016)
  4. Peraro, Tiziano: Scattering amplitudes over finite fields and multivariate functional reconstruction (2016)
  5. Bury, M.; van Hameren, A.: Numerical evaluation of multi-gluon amplitudes for high energy factorization (2015)
  6. Gerwick, Erik; Schumann, Steffen; Höche, Stefan; Marzani, Simone: Soft evolution of multi-jet final states (2015)
  7. Alioli, S.; Badger, S.; Bellm, J.; Biedermann, B.; Boudjema, F.; Cullen, G.; Denner, A.; van Deurzen, H.; Dittmaier, S.; Frederix, R.; Frixione, S.; Garzelli, M. V.; Gieseke, S.; Glover, E. W. N.; Greiner, N.; Heinrich, G.; Hirschi, V.; Höche, S.; Huston, J.; Ita, H.; Kauer, N.; Krauss, F.; Luisoni, G.; Maître, D.; Maltoni, F.; Nason, P.; Oleari, C.; Pittau, R.; Plätzer, S.; Pozzorini, S.; Reina, L.; Reuschle, C.; Robens, T.; Schlenk, J.; Schönherr, M.; Siegert, F.; von Soden-Fraunhofen, J. F.; Tackmann, F.; Tramontano, F.; Uwer, P.; Salam, G.; Skands, P.; Weinzierl, S.; Winter, J.; Yundin, V.; Zanderighi, G.; Zaro, M.: Update of the binoth LES houches accord for a standard interface between Monte Carlo tools and one-loop programs (2014)
  8. Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.-S.; Stelzer, T.; Torrielli, P.; Zaro, M.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations (2014)
  9. Buchta, Sebastian; Chachamis, Grigorios; Draggiotis, Petros; Malamos, Ioannis; Rodrigo, Germán: On the singular behaviour of scattering amplitudes in quantum field theory (2014)
  10. Guillet, J. Ph.; Heinrich, G.; von Soden-Fraunhofen, J. F.: Tools for NLO automation: Extension of the golem95C integral library (2014)
  11. Peraro, Tiziano: Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes (2014)
  12. Badger, Simon; Frellesvig, Hjalte; Zhang, Yang: Hepta-cuts of two-loop scattering amplitudes (2012)
  13. Ita, Harald; Ozeren, Kemal: Colour decompositions of multi-quark one-loop QCD amplitudes (2012)
  14. Mastrolia, Pierpaolo; Mirabella, Edoardo; Peraro, Tiziano: Integrand reduction of one-loop scattering amplitudes through Laurent series expansion (2012)
  15. Pittau, R.: Primary Feynman rules to calculate the (\epsilon)-dimensional integrand of any 1-loop amplitude (2012)
  16. Reina, Laura; Schutzmeier, Thomas: Towards (W b\overlineb+j) at NLO with an automatized approach to one-loop computations (2012)
  17. Shao, Hua-Sheng; Zhang, Yu-Jie: Feynman rules for the rational part of one-loop QCD corrections in the MSSM (2012)
  18. Worek, Malgorzata: On the next-to-leading order QCD ( \mathcalK)-factor for ( t\overlinet b\overlineb ) production at the TeVatron (2012)
  19. Zhang, Yang: Integrand-level reduction of loop amplitudes by computational algebraic geometry methods (2012)
  20. Mastrolia, Pierpaolo; Ossola, Giovanni: On the integrand-reduction method for two-loop scattering amplitudes (2011)

1 2 next