pLoc-mGneg

pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Information of the proteins’ subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called ”pLoc-mGneg” for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to ”iLoc-Gneg”, the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.


References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Bai, Xiaolu; Chen, Xiaolin: Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia (2019)
  4. Butt, Ahmad Hassan; Rasool, Nouman; Khan, Yaser Daanial: Prediction of antioxidant proteins by incorporating statistical moments based features into Chou’s PseAAC (2019)
  5. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  6. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  7. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  8. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  9. Shen, Yinan; Tang, Jijun; Guo, Fei: Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC (2019)
  10. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  11. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  12. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  13. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  14. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  15. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  16. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  17. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  18. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  19. Qiu, Wenying; Li, Shan; Cui, Xiaowen; Yu, Zhaomin; Wang, Minghui; Du, Junwei; Peng, Yanjun; Yu, Bin: Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition (2018)
  20. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)

1 2 next