iKcr-PseEns

iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Lysine crotonylation (Kcr) is an evolution-conserved histone posttranslational modification (PTM), occurring in both human somatic and mouse male germ cell genomes. It is important for male germ cell differentiation. Information of Kcr sites in proteins is very useful for both basic research and drug development. But it is time-consuming and expensive to determine them by experiments alone. Here, we report a novel predictor called iKcr-PseEns that is established by incorporating five tiers of amino acid pairwise couplings into the general pseudo amino acid composition. It has been observed via rigorous cross-validations that the new predictor’s sensitivity (Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 90.53%, 95.27%, 94.49%, and 0.826, respectively. For the convenience of most experimental scientists, a user-friendly web-server for iKcr-PseEns has been established at http://www.jci-bioinfo.cn/iKcr-PseEns, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.


References in zbMATH (referenced in 19 articles )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Butt, Ahmad Hassan; Rasool, Nouman; Khan, Yaser Daanial: Prediction of antioxidant proteins by incorporating statistical moments based features into Chou’s PseAAC (2019)
  4. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  5. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  6. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  7. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  8. Shen, Yinan; Tang, Jijun; Guo, Fei: Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC (2019)
  9. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  10. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  11. Zhang, Chen-Rong; Tian, Bo; Liu, Lei; Chai, Han-Peng; Du, Zhong: Vector breathers with the negatively coherent coupling in a weakly birefringent fiber (2019)
  12. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  13. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  14. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  15. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  16. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  17. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  18. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  19. Qiu, Wenying; Li, Shan; Cui, Xiaowen; Yu, Zhaomin; Wang, Minghui; Du, Junwei; Peng, Yanjun; Yu, Bin: Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition (2018)