References in zbMATH (referenced in 46 articles )

Showing results 1 to 20 of 46.
Sorted by year (citations)

1 2 3 next

  1. Daghyani, Masoud; Zamzami, Nuha; Bouguila, Nizar: Toward an efficient computation of log-likelihood functions in statistical inference: overdispersed count data clustering (2020)
  2. Hwang, Wen-Han; Blakey, Rachel V.; Stoklosa, Jakub: Right-censored mixed Poisson count models with detection times (2020)
  3. Jourdain, N. O. A. S.; Cole, D. J.; Ridout, M. S.; Rowcliffe, J. Marcus: Statistical development of animal density estimation using random encounter modelling (2020)
  4. Kowal, Daniel R.; Canale, Antonio: Simultaneous transformation and rounding (STAR) models for integer-valued data (2020)
  5. Weißbach, Rafael; Radloff, Lucas: Consistency for the negative binomial regression with fixed covariate (2020)
  6. Amiri, Mohammad Moqaddasi; Tapak, Leili; Faradmal, Javad: A mixed-effects least square support vector regression model for three-level count data (2019)
  7. Borges, Patrick; Godoi, Luciana G.: Pólya-Aeppli regression model for overdispersed count data (2019)
  8. Çetinkaya, Merve Kandemir; Kaçıranlar, Selahattin: Improved two-parameter estimators for the negative binomial and Poisson regression models (2019)
  9. Kim, Jeonghwan; Lee, Woojoo: On testing the hidden heterogeneity in negative binomial regression models (2019)
  10. Li, Chin-Shang; Lee, Shen-Ming; Yeh, Ming-Shan: A test for lack-of-fit of zero-inflated negative binomial models (2019)
  11. Luyts, Martial; Molenberghs, Geert; Verbeke, Geert; Matthijs, Koen; Ribeiro, Eduardo E. jun.; Demétrio, Clarice G. B.; Hinde, John: A Weibull-count approach for handling under- and overdispersed longitudinal/clustered data structures (2019)
  12. Martínez-Rodríguez, Ana María; Conde-Sánchez, Antonio; Olmo-Jiménez, María José: A new approach to truncated regression for count data (2019)
  13. Xiong, Lanyu; Zhu, Fukang: Robust quasi-likelihood estimation for the negative binomial integer-valued GARCH(1,1) model with an application to transaction counts (2019)
  14. Yamrubboon, Darika; Thongteeraparp, Ampai; Bodhisuwan, Winai; Jampachaisri, Katechan; Volodin, Andrei: Bayesian inference for the negative binomial-Sushila linear model (2019)
  15. Adragni, Kofi P.: Minimum average deviance estimation for sufficient dimension reduction (2018)
  16. Asar, Yasin: Liu-type negative binomial regression: a comparison of recent estimators and applications (2018)
  17. Asar, Yasin; Genç, Aşır: A new two-parameter estimator for the Poisson regression model (2018)
  18. Inan, Gul; Preisser, John; Das, Kalyan: A score test for testing a marginalized zero-inflated Poisson regression model against a marginalized zero-inflated negative binomial regression model (2018)
  19. Congdon, Peter: Quantile regression for overdispersed count data: a hierarchical method (2017)
  20. Hassanzadeh, Fatemeh; Kazemi, Iraj: Regression modeling of one-inflated positive count data (2017)

1 2 3 next