MLTSVM

MLTSVM: a novel twin support vector machine to multi-label learning. Multi-label learning paradigm, which aims at dealing with data associated with potential multiple labels, has attracted a great deal of attention in machine intelligent community. In this paper, we propose a novel multi-label twin support vector machine (MLTSVM) for multi-label classification. MLTSVM determines multiple nonparallel hyperplanes to capture the multi-label information embedded in data, which is a useful promotion of twin support vector machine (TWSVM) for multi-label classification. To speed up the training procedure, an efficient successive overrelaxation (SOR) algorithm is developed for solving the involved quadratic programming problems (QPPs) in MLTSVM. Extensive experimental results on both synthetic and real-world multi-label datasets confirm the feasibility and effectiveness of the proposed MLTSVM.