iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. As one of the most important posttranslational modifications (PTMs), ubiquitination plays an important role in regulating varieties of biological processes, such as signal transduction, cell division, apoptosis, and immune response. Ubiquitination is also named ”lysine ubiquitination” because it occurs when an ubiquitin is covalently attached to lysine (K) residues of targeting proteins. Given an uncharacterized protein sequence that contains many lysine residues, which one of them is the ubiquitination site, and which one is of non-ubiquitination site? With the avalanche of protein sequences generated in the postgenomic age, it is highly desired for both basic research and drug development to develop an automated method for rapidly and accurately annotating the ubiquitination sites in proteins. In view of this, a new predictor called ”iUbiq-Lys” was developed based on the evolutionary information, gray system model, as well as the general form of pseudo-amino acid composition. It was demonstrated via the rigorous cross-validations that the new predictor remarkably outperformed all its counterparts. As a web-server, iUbiq-Lys is accessible to the public at http://www.jci-bioinfo.cn/iUbiq-Lys . For the convenience of most experimental scientists, we have further provided a protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the complicated mathematics that were presented in this paper just for the integrity of its development process.

References in zbMATH (referenced in 8 articles )

Showing results 1 to 8 of 8.
Sorted by year (citations)

  1. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  2. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  3. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  4. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  5. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  6. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  7. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  8. Dehzangi, Abdollah; López, Yosvany; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok: PSSM-Suc: accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction (2017)