Fermat

Fermat is a computer algebra system (CAS) for Macintosh, Windows, Linux, and Unix by me, Robert H. Lewis of Fordham University, that does arithmetic of arbitrarily long integers and fractions, multivariate polynomials, symbolic calculations, matrices over polynomial rings, graphics, and other numerical calculations. It is extremely fast and extremely economical of space. The main version that I care most about is oriented toward polynomial and matrix algebra over the rationals Q and finite fields. On the Mac side, there are versions for OS X and old versions for OS 9. There are 64 bit versions. There is an old ”float” version for graphics (no longer usable) and some new float versions (no graphics). All versions are available here.

This software is also referenced in ORMS.


References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function $F_2(x, Q^2)$ and the anomalous dimension (2015)
  2. Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The 3-loop non-singlet heavy flavor contributions to the structure function $g_1(x, Q^2)$ at large momentum transfer (2015)
  3. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function $\mathrmF_2(\mathrmx, Q^\mathrm2)$ and transversity (2014)
  4. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.: The $O(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element (2014)
  5. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.: The transition matrix element $A_gq(N)$ of the variable flavor number scheme at $O(\alpha_s^3)$ (2014)
  6. Maierhöfer, P.; Marquard, P.: Complete three-loop QCD corrections to the decay $H \to \gamma \gamma$ (2013)
  7. Sturm, Christian: Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED (2013)
  8. Vermaseren, Jos A.M.: Potential of FORM 4.0 (2013)
  9. Lloyd, Noel G.; Pearson, Jane Margaret: A cubic differential system with nine limit cycles (2012)
  10. Czakon, M.: Double-real radiation in hadronic top quark pair production as a proof of a certain concept (2011)
  11. Lewis, Robert H.: Comparing acceleration techniques for the Dixon and Macaulay resultants (2010)
  12. Pearson, Jane M.; Lloyd, Noel G.: Kukles revisited: Advances in computing techniques (2010)
  13. Bekavac, S.; Grozin, A.G.; Seidel, D.; Smirnov, V.A.: Three-loop on-shell Feynman integrals with two masses (2009)
  14. Zhao, ShiZhong; Fu, HongGuang: Three kinds of extraneous factors in Dixon resultants (2009)
  15. Lewis, Robert H.: Heuristics to accelerate the Dixon resultant (2008)
  16. Hill, J.M.; Lloyd, N.G.; Pearson, J.M.: Algorithmic derivation of isochronicity conditions (2007)
  17. Lewis, Robert H.; Coutsias, Evangelos A.: Algorithmic search for flexibility using resultants of polynomial systems (2007)
  18. Fiala, Nick C.; Agre, Keith M.: Searching for shortest single axioms for groups of exponent $6$ (2006)
  19. Fotiou, I.A.; Rostalski, P.; Parrilo, P.A.; Morari, M.: Parametric optimization and optimal control using algebraic geometry methods (2006)
  20. Zhao, Shizhong; Fu, Hongguang: An extended fast algorithm for constructing the Dixon resultant matrix (2005)

1 2 next