On sequential track extraction within the PMHT framework Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic multiple hypothesis tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on expectation-maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. In particular, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. A sequential likelihood-ratio (LR) test for track extraction has been developed and integrated into the framework of traditional Bayesian multiple hypothesis tracking by G”unter van Keuk in 1998. As PMHT is a multiscan approach as well, it also has the potential for track extraction. In this paper, an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. The LR is thus a by-product of the PMHT iteration process, as PMHT provides all required ingredients for a sequential LR calculation. Therefore, the resulting update formula for the sequential LR test affords the development of track-before-detect algorithms for PMHT. The approach is illustrated by a simple example.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element