The NVIDIA® CUDA® Toolkit provides a comprehensive development environment for C and C++ developers building GPU-accelerated applications. The CUDA Toolkit includes a compiler for NVIDIA GPUs, math libraries, and tools for debugging and optimizing the performance of your applications. You’ll also find programming guides, user manuals, API reference, and other documentation to help you get started quickly accelerating your application with GPUs.

References in zbMATH (referenced in 857 articles , 2 standard articles )

Showing results 1 to 20 of 857.
Sorted by year (citations)

1 2 3 ... 41 42 43 next

  1. Yang, Wangdong; Li, Kenli; Li, Keqin: A parallel computing method using blocked format with optimal partitioning for SpMV on GPU (2018)
  2. Yianni, Panayioti C.; Neves, Luis C.; Rama, Dovile; Andrews, John D.: Accelerating Petri-net simulations using NVIDIA graphics processing units (2018)
  3. Afzal, Asif; Ansari, Zahid; Rimaz Faizabadi, Ahmed; Ramis, M.K.: Parallelization strategies for computational fluid dynamics software: state of the art review (2017)
  4. Aissa, Mohamed; Verstraete, Tom; Vuik, Cornelis: Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes (2017)
  5. Alonso, Pedro; Ibáñez, Javier; Sastre, Jorge; Peinado, Jesús; Defez, Emilio: Efficient and accurate algorithms for computing matrix trigonometric functions (2017)
  6. Al-Refaie, Ahmed F.; Yurchenko, Sergei N.; Tennyson, Jonathan: GPU accelerated intensities MPI (GAIN-MPI): a new method of computing Einstein-$A$ coefficients (2017)
  7. Amaral, Sergio; Allaire, Douglas; Willcox, Karen: Optimal $L_2$-norm empirical importance weights for the change of probability measure (2017)
  8. Antti-Pekka Hynninen, Dmitry I. Lyakh: cuTT: A High-Performance Tensor Transpose Library for CUDA Compatible GPUs (2017) arXiv
  9. Avrachenkov, K.; Chebotarev, P.; Mishenin, A.: Semi-supervised learning with regularized Laplacian (2017)
  10. Bernaschi, M.; Lulli, M.; Sbragaglia, M.: GPU based detection of topological changes in Voronoi diagrams (2017)
  11. Boubekeur, Mohamed; Benkhaldoun, Fayssal; Seaid, Mohammed: GPU accelerated finite volume methods for three-dimensional shallow water flows (2017)
  12. Cayrel, Pierre-Louis; Meziani, Mohammed; Ndiaye, Ousmane; Lindner, Richard; Silva, Rosemberg: A pseudorandom number generator based on worst-case lattice problems (2017)
  13. Cedric Nugteren: CLBlast: A Tuned OpenCL BLAS Library (2017) arXiv
  14. Chen, Cheng; Fang, Jianbin; Tang, Tao; Yang, Canqun: LU factorization on heterogeneous systems: an energy-efficient approach towards high performance (2017)
  15. Chen, Jingmin; Grundel, Sara; Yu, Thomas P.Y.: A flexible $C^2$ subdivision scheme on the sphere: with application to biomembrane modelling (2017)
  16. Chen, Tianran; Lee, Tsung-Lin; Li, Tien-Yien: Mixed cell computation in HOM4ps (2017)
  17. Chen, Tianran; Mehta, Dhagash: Parallel degree computation for binomial systems (2017)
  18. Conte, Dajana; Paternoster, Beatrice: Parallel methods for weakly singular Volterra integral equations on GPUs (2017)
  19. de Paula, Lauro Cássio Martins; Soares, Anderson S.; Soares, Telma W.L.; Filho, Arlindo R.G.; Coelho, Clarimar J.; Delbem, Alexandre C.B.; Martins, Wellington S.: Parallel regressions for variable selection using GPU (2017)
  20. Dreossi, Tommaso; Dang, Thao; Piazza, Carla: Reachability computation for polynomial dynamical systems (2017)

1 2 3 ... 41 42 43 next