MPFR

The MPFR library is a C library for multiple-precision floating-point computations with correct rounding. MPFR has continuously been supported by the INRIA and the current main authors come from the Caramel and AriC project-teams at Loria (Nancy, France) and LIP (Lyon, France) respectively; see more on the credit page. MPFR is based on the GMP multiple-precision library. The main goal of MPFR is to provide a library for multiple-precision floating-point computation which is both efficient and has a well-defined semantics. It copies the good ideas from the ANSI/IEEE-754 standard for double-precision floating-point arithmetic (53-bit significand). MPFR is free. It is distributed under the GNU Lesser General Public License (GNU Lesser GPL), version 3 or later (2.1 or later for MPFR versions until 2.4.x). The library has been registered in France by the Agence de Protection des Programmes under the number IDDN FR 001 120020 00 R P 2000 000 10800, on 15 March 2000. This license guarantees your freedom to share and change MPFR, to make sure MPFR is free for all its users. Unlike the ordinary General Public License, the Lesser GPL enables developers of non-free programs to use MPFR in their programs. If you have written a new function for MPFR or improved an existing one, please share your work!


References in zbMATH (referenced in 122 articles , 1 standard article )

Showing results 1 to 20 of 122.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Bezanson, Jeff; Edelman, Alan; Karpinski, Stefan; Shah, Viral B.: Julia: a fresh approach to numerical computing (2017)
  2. Bobylev, Alexander; Gamba, Irene M.; Zhang, Chenglong: On the rate of relaxation for the Landau kinetic equation and related models (2017)
  3. Claus Fieker, William Hart, Tommy Hofmann, Fredrik Johansson: Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language (2017) arXiv
  4. de Camargo, André Pierro; Mascarenhas, Walter F.: The stability of extended Floater-Hormann interpolants (2017)
  5. Narang, Mona; Bhatia, Saurabh; Kanwar, Vinay: New efficient derivative free family of seventh-order methods for solving systems of nonlinear equations (2017)
  6. Suñé, Víctor: Computing the expected Markov reward rates with stationarity detection and relative error control (2017)
  7. Toth, Csaba D. (ed.); Goodman, Jacob E. (ed.); O’Rourke, Joseph (ed.): Handbook of discrete and computational geometry (2017)
  8. Bangay, Shaun; Beliakov, Gleb: On the fast Lanczos method for computation of eigenvalues of Hankel matrices using multiprecision arithmetics. (2016)
  9. Beliakov, Gleb; Matiyasevich, Yuri: A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic (2016)
  10. Brauße, Franz; Korovina, Margarita; Müller, Norbert: Using Taylor models in exact real arithmetic (2016)
  11. Brauße, Franz; Korovina, Margarita; Müller, Norbert Th.: Towards using exact real arithmetic for initial value problems (2016)
  12. Carrasco, Juan A.: Numerically stable methods for the computation of exit rates in Markov chains (2016)
  13. Filip, Silviu-Ioan: A robust and scalable implementation of the Parks-McClellan algorithm for designing FIR filters (2016)
  14. Joldes, Mioara; Muller, Jean-Michel; Popescu, Valentina; Tucker, Warwick: CAMPARY: cuda multiple precision arithmetic library and applications (2016)
  15. Karney, Charles F.F.: Sampling exactly from the normal distribution (2016)
  16. Koch, Hans: On hyperbolicity in the renormalization of near-critical area-preserving maps (2016)
  17. Leykin, Anton: Polynomial homotopy continuation in Macaulay2 (2016)
  18. Muller, Jean-Michel: Elementary functions. Algorithms and implementation (2016)
  19. Petković, Miodrag S.; Sharma, Janak Raj: On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations (2016)
  20. Ramaré, O.: An explicit density estimate for Dirichlet $L$-series (2016)

1 2 3 ... 5 6 7 next