Gmsh

Gmsh is a 3D finite element grid generator with a build-in CAD engine and post-processor. Its design goal is to provide a fast, light and user-friendly meshing tool with parametric input and advanced visualization capabilities. Gmsh is built around four modules: geometry, mesh, solver and post-processing. The specification of any input to these modules is done either interactively using the graphical user interface or in ASCII text files using Gmsh’s own scripting language.


References in zbMATH (referenced in 115 articles , 1 standard article )

Showing results 1 to 20 of 115.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Cuvelier, François; Japhet, Caroline; Scarella, Gilles: An efficient way to assemble finite element matrices in vector languages (2016)
  2. Feng, Xinzeng; Hui, Chung-Yuen: Force sensing using 3D displacement measurements in linear elastic bodies (2016)
  3. Gao, Huadong; Sun, Weiwei: A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge (2016)
  4. Guillén-González, F.; Rodríguez Galván, J.R.: On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity (2016)
  5. Homolya, M.; Ham, D.A.: A parallel edge orientation algorithm for quadrilateral meshes (2016)
  6. Kashiwabara, Takahito; Oikawa, Issei; Zhou, Guanyu: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition (2016)
  7. Lange, Michael; Mitchell, Lawrence; Knepley, Matthew G.; Gorman, Gerard J.: Efficient mesh management in firedrake using PETSc DMPlex (2016)
  8. Mueller, Jens-Dominik: Essentials of computational fluid dynamics (2016)
  9. Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin: Modelling interfacial cracking with non-matching cohesive interface elements (2016)
  10. Niemi, Antti H.: Benchmark computations of stresses in a spherical dome with shell finite elements (2016)
  11. Nürnberg, Robert; Sacconi, Andrea: A fitted finite element method for the numerical approximation of void electro-stress migration (2016)
  12. Pérez Zerpa, Jorge M.; Canelas, Alfredo: Efficient formulations of the material identification problem using full-field measurements (2016)
  13. Vidal-Ferràndiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.: Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry (2016)
  14. Zhang, Hong; Sandu, Adrian; Blaise, Sébastien: High order implicit-explicit general linear methods with optimized stability regions (2016)
  15. Casoni, E.; Jérusalem, A.; Samaniego, C.; Eguzkitza, B.; Lafortune, P.; Tjahjanto, D.D.; Sáez, X.; Houzeaux, G.; Vázquez, M.: Alya: computational solid mechanics for supercomputers (2015)
  16. Farrell, P.E.; Birkisson, Á.; Funke, S.W.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations (2015)
  17. Gaul, André; Schlömer, Nico: Preconditioned recycling Krylov subspace methods for self-adjoint problems (2015)
  18. Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas: Texture generation for photoacoustic elastography (2015)
  19. Gmeiner, Björn; Rüde, Ulrich; Stengel, Holger; Waluga, Christian; Wohlmuth, Barbara: Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems (2015)
  20. Gulizzi, V.; Milazzo, A.; Benedetti, I.: An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials (2015)

1 2 3 4 5 6 next