References in zbMATH (referenced in 152 articles , 1 standard article )

Showing results 1 to 20 of 152.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Afridi, Mohammad Khan; Azam, Nouman; Yao, JingTao: Variance based three-way clustering approaches for handling overlapping clustering (2020)
  2. Alonso, Andrés M.; Galeano, Pedro; Peña, Daniel: A robust procedure to build dynamic factor models with cluster structure (2020)
  3. Tang, Ming; Liao, Huchang; Xu, Jiuping; Streimikiene, Dalia; Zheng, Xiaosong: Adaptive consensus reaching process with hybrid strategies for large-scale group decision making (2020)
  4. Alonso, Andrés M.; Peña, Daniel: Clustering time series by linear dependency (2019)
  5. Chung, Jaewon; Pedigo, Benjamin D.; Bridgeford, Eric W.; Varjavand, Bijan K.; Helm, Hayden S.; Vogelstein, Joshua T.: GraSPY: graph statistics in Python (2019)
  6. Hearne, Gareth M.; Milne, Andrew J.; Dean, Roger T.: Distributional analysis of (n)-dimensional feature space for 7-note scales in 22-TET (2019)
  7. He, Zhenfeng; Yu, Chunyan: Clustering stability-based evolutionary K-means (2019)
  8. Iglesias, Félix; Zseby, Tanja; Ferreira, Daniel; Zimek, Arthur: MDCGen: multidimensional dataset generator for clustering (2019)
  9. Le Brigant, Alice; Puechmorel, Stéphane: Quantization and clustering on Riemannian manifolds with an application to air traffic analysis (2019)
  10. López de Prado, Marcos; Lewis, Michael J.: Detection of false investment strategies using unsupervised learning methods (2019)
  11. Maragoudakis, Manolis: Data analysis, simulation and visualization for environmentally safe maritime data (2019)
  12. Pulina, Luca; Seidl, Martina: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17) (2019)
  13. Ünlü, Ramazan; Xanthopoulos, Petros: A weighted framework for unsupervised ensemble learning based on internal quality measures (2019)
  14. Yuan, Beibei; Heiser, Willem; De Rooij, Mark: The (\delta)-machine: classification based on distances towards prototypes (2019)
  15. Brodinová, Šárka; Zaharieva, Maia; Filzmoser, Peter; Ortner, Thomas; Breiteneder, Christian: Clustering of imbalanced high-dimensional media data (2018)
  16. Das, Asit Kumar; Das, Sunanda: A comparative study on different versions of multi-objective genetic algorithm for simultaneous gene selection and sample categorization (2018)
  17. Gallegos, María Teresa; Ritter, Gunter: Probabilistic clustering via Pareto solutions and significance tests (2018)
  18. Gunasekara, R. Chulaka; Mohan, Chilukuri K.; Mehrotra, Kishan: Multi-objective optimization to improve robustness in networks (2018)
  19. Hargreaves, Jessica K.; Knight, Marina I.; Pitchford, Jon W.; Oakenfull, Rachael J.; Davis, Seth J.: Clustering nonstationary circadian rhythms using locally stationary wavelet representations (2018)
  20. Hedar, Abdel-Rahman; Ibrahim, Abdel-Monem M.; Abdel-Hakim, Alaa E.; Sewisy, Adel A.: (K)-means cloning: adaptive spherical (K)-means clustering (2018)

1 2 3 ... 6 7 8 next