MUMPS

Solution of large linear systems with symmetric positive definite matrices; general symmetric matrices; general unsymmetric matrices; Version for complex arithmetic; Parallel factorization and solve phases (uniprocessor version also available); Iterative refinement and backward error analysis; Various matrix input formats assembled format; distributed assembled format; elemental format; Partial factorization and Schur complement matrix (centralized or 2D block-cyclic); Interfaces to MUMPS: Fortran, C, Matlab and Scilab; Several orderings interfaced: AMD, AMF, PORD, METIS, PARMETIS, SCOTCH, PT-SCOTCH.


References in zbMATH (referenced in 288 articles , 2 standard articles )

Showing results 1 to 20 of 288.
Sorted by year (citations)

1 2 3 ... 13 14 15 next

  1. Allendes, Alejandro; Otárola, Enrique; Rankin, Richard: A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations (2018)
  2. Almonacid, Javier A.; Gatica, Gabriel N.; Oyarzúa, Ricardo: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity (2018)
  3. Aulisa, Eugenio; Bnà, Simone; Bornia, Giorgio: A monolithic ALE Newton-Krylov solver with multigrid-Richardson-Schwarz preconditioning for incompressible fluid-structure interaction (2018)
  4. Barucq, Hélène; Faucher, Florian; Pham, Ha: Localization of small obstacles from back-scattered data at limited incident angles with full-waveform inversion (2018)
  5. Cots, Olivier; Gergaud, Joseph; Goubinat, Damien: Direct and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraft (2018)
  6. Giani, Stefano: Reliable anisotropic-adaptive discontinuous Galerkin method for simplified $\mathbfP_\mathbfN$ approximations of radiative transfer (2018)
  7. Giani, Stefano: $HP$-adaptive \itcelatus enriched discontinuous Galerkin method for second-order elliptic source problems (2018)
  8. Hewitt, Richard E.; Duck, Peter W.: Localised streak solutions for a Blasius boundary layer (2018)
  9. Homsi, Lina; Noels, Ludovic: A discontinuous Galerkin method for non-linear electro-thermo-mechanical problems: application to shape memory composite materials (2018)
  10. Houston, Paul; Wihler, Thomas P.: An $hp$-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems (2018)
  11. Hück, Alexander; Bischof, Christian; Sagebaum, Max; Gauger, Nicolas R.; Jurgelucks, Benjamin; Larour, Eric; Perez, Gilberto: A usability case study of algorithmic differentiation tools on the ISSM ice sheet model (2018)
  12. Kalantzis, Vassilis; Xi, Yuanzhe; Saad, Yousef: Beyond automated multilevel substructuring: domain decomposition with rational filtering (2018)
  13. Łoś, M.; Schaefer, R.; Paszyński, M.: Parallel space-time $hp$ adaptive discretization scheme for parabolic problems (2018)
  14. Mezzadri, Francesco; Galligani, Emanuele: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication (2018)
  15. Oh, Duk-Soon; Widlund, Olof B.; Zampini, Stefano; Dohrmann, Clark R.: BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields (2018)
  16. Paganini, Alberto; Wechsung, Florian; Farrell, Patrick E.: Higher-order moving mesh methods for PDE-constrained shape optimization (2018)
  17. Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, S.: Isogeometric BDDC deluxe preconditioners for linear elasticity (2018)
  18. Picot, Joris; Glockner, Stéphane: Reduction of the discretization stencil of direct forcing immersed boundary methods on rectangular cells: the ghost node shifting method (2018)
  19. Safin, Artur; Minkoff, Susan; Zweck, John: A preconditioned finite element solution of the coupled pressure-temperature equations used to model trace gas sensors (2018)
  20. Walker, Shawn W.: FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling (2018)

1 2 3 ... 13 14 15 next


Further publications can be found at: http://mumps.enseeiht.fr/index.php?page=doc