MIPLIB

A mixed integer (linear) program (mip) is an optimization problem in which a linear objective function is minimized subject to linear constraints over real- and integervalued variables. For details on mixed integer programming, see, e.g., [69,106]. The miplib is a diverse collection of challenging real-world mip instances from various academic and industrial applications suited for benchmarking and testing of mip solution algorithms.


References in zbMATH (referenced in 207 articles , 1 standard article )

Showing results 1 to 20 of 207.
Sorted by year (citations)

1 2 3 ... 9 10 11 next

  1. Andrea Callia D’Iddio, Michael Huth: Manyopt: An Extensible Tool for Mixed, Non-Linear Optimization Through SMT Solving (2017) arXiv
  2. Berthold, Timo; Farmer, James; Heinz, Stefan; Perregaard, Michael: Parallelization of the FICO Xpress-Optimizer (2016)
  3. Fischetti, Matteo; Lodi, Andrea; Monaci, Michele; Salvagnin, Domenico; Tramontani, Andrea: Improving branch-and-cut performance by random sampling (2016)
  4. Friberg, Henrik A.: CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization (2016)
  5. Kevin K. H. Cheung, Ambros Gleixner, Daniel E. Steffy: Verifying Integer Programming Results (2016) arXiv
  6. Salvagnin, Domenico: Detecting semantic groups in MIP models (2016)
  7. Santos, Haroldo G.; Toffolo, Túlio A.M.; Gomes, Rafael A.M.; Ribas, Sabir: Integer programming techniques for the nurse rostering problem (2016)
  8. Yuh, Junsang; Lee, Youngho: Surrogate-RLT cuts for zero-one integer programs (2016)
  9. Bergner, Martin; Caprara, Alberto; Ceselli, Alberto; Furini, Fabio; Lübbecke, Marco E.; Malaguti, Enrico; Traversi, Emiliano: Automatic Dantzig-Wolfe reformulation of mixed integer programs (2015)
  10. Bonami, Pierre; Lodi, Andrea; Tramontani, Andrea; Wiese, Sven: On mathematical programming with indicator constraints (2015)
  11. Bonami, Pierre; Margot, François: Cut generation through binarization (2015)
  12. Caramia, Massimiliano; Mari, Renato: Enhanced exact algorithms for discrete bilevel linear problems (2015)
  13. Gamrath, Gerald; Koch, Thorsten; Martin, Alexander; Miltenberger, Matthias; Weninger, Dieter: Progress in presolving for mixed integer programming (2015)
  14. Gleixner, Ambros M.: Exact and fast algorithms for mixed-integer nonlinear programming (2015)
  15. Hendel, Gregor: Enhancing MIP branching decisions by using the sample variance of pseudo costs (2015)
  16. Honarmand, Masoud; Zakariazadeh, Alireza; Jadid, Shahram: Self-scheduling of electric vehicles in an intelligent parking lot using stochastic optimization (2015)
  17. Louveaux, Quentin; Poirrier, Laurent; Salvagnin, Domenico: The strength of multi-row models (2015)
  18. Paparrizos, Konstantinos; Samaras, Nikolaos; Sifaleras, Angelo: Exterior point simplex-type algorithms for linear and network optimization problems (2015)
  19. Xie, Lin; Suhl, Leena: Cyclic and non-cyclic crew rostering problems in public bus transit (2015)
  20. Berthold, Timo: RENS. The optimal rounding (2014)

1 2 3 ... 9 10 11 next


Further publications can be found at: http://miplib.zib.de/biblio.html