GetDP: a General Environment for the Treatment of Discrete Problems. GetDP is a general finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. The main feature of GetDP is the closeness between the input data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

References in zbMATH (referenced in 29 articles )

Showing results 1 to 20 of 29.
Sorted by year (citations)

1 2 next

  1. Homolya, Miklós; Mitchell, Lawrence; Luporini, Fabio; Ham, David A.: TSFC: a structure-preserving form compiler (2018)
  2. Antoine, X.; Geuzaine, C.: Optimized Schwarz domain decomposition methods for scalar and vector Helmholtz equations (2017)
  3. Paquay, Yannick; Brüls, O.; Geuzaine, C.: Model order reduction of nonlinear eddy current problems using missing point estimation (2017)
  4. Niyonzima, I.; Geuzaine, C.; Schöps, S.: Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems (2016)
  5. Thierry, B.; Vion, A.; Tournier, S.; El Bouajaji, M.; Colignon, D.; Marsic, N.; Antoine, X.; Geuzaine, C.: GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems (2016)
  6. El Bouajaji, M.; Thierry, B.; Antoine, X.; Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations (2015)
  7. Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas: Texture generation for photoacoustic elastography (2015)
  8. Haine, Ghislain: Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator (2014)
  9. François-Lavet, V.; Henrotte, F.; Stainier, L.; Noels, L.; Geuzaine, C.: An energy-based variational model of ferromagnetic hysteresis for finite element computations (2013)
  10. Boubendir, Y.; Antoine, X.; Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation (2012)
  11. Durand, S.; Slodička, M.: Convergence of the mixed finite element method for Maxwell’s equations with nonlinear conductivity (2012)
  12. Prud’homme, Christophe; Chabannes, Vincent; Doyeux, Vincent; Ismail, Mourad; Samake, Abdoulaye: Feel++: a computational framework for Galerkin methods and advanced numerical methods (2012)
  13. Durand, Stephane; Slodička, Marián: Fully discrete finite element method for Maxwell’s equations with nonlinear conductivity (2011)
  14. Slodička, Marián; Durand, Stephane: Fully discrete finite element scheme for Maxwell’s equations with non-linear boundary condition (2011)
  15. Alnæs, Martin Sandve; Mardal, Kent-André: On the efficiency of symbolic computations combined with code generation for finite element methods (2010)
  16. Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar: Finite element exterior calculus: From Hodge theory to numerical stability (2010)
  17. Logg, Anders; Wells, Garth N.: DOLFIN: automated finite element computing (2010)
  18. Poignard, Clair: Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer (2008)
  19. Specogna, Ruben; Suuriniemi, Saku; Trevisan, Francesco: Geometric $T-\Omega$ approach to solve eddy currents coupled to electric circuits (2008)
  20. Terrel, A. R.; Scott, L. R.; Knepley, M. G.; Kirby, R. C.: Automated FEM discretizations for the Stokes equation (2008)

1 2 next