GetDP: a General Environment for the Treatment of Discrete Problems. GetDP is a general finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. The main feature of GetDP is the closeness between the input data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Aylwin, Ruben; Jerez-Hanckes, Carlos; Schwab, Christoph; Zech, Jakob: Domain uncertainty quantification in computational electromagnetics (2020)
  2. Niyonzima, Innocent; Jiao, Yang; Fish, Jacob: Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices (2019)
  3. Alouges, François; Aussal, Matthieu: FEM and BEM simulations with the Gypsilab framework (2018)
  4. Homolya, Miklós; Mitchell, Lawrence; Luporini, Fabio; Ham, David A.: TSFC: a structure-preserving form compiler (2018)
  5. Vion, Alexandre; Geuzaine, Christophe: Improved sweeping preconditioners for domain decomposition algorithms applied to time-harmonic Helmholtz and Maxwell problems (2018)
  6. Antoine, X.; Geuzaine, C.: Optimized Schwarz domain decomposition methods for scalar and vector Helmholtz equations (2017)
  7. Chovan, Jaroslav; Geuzaine, Christophe; Slodička, Marián: (A)-(\phi) formulation of a mathematical model for the induction hardening process with a nonlinear law for the magnetic field (2017)
  8. Paquay, Yannick; Brüls, O.; Geuzaine, C.: Model order reduction of nonlinear eddy current problems using missing point estimation (2017)
  9. Niyonzima, I.; Geuzaine, C.; Schöps, S.: Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems (2016)
  10. Thierry, B.; Vion, A.; Tournier, S.; El Bouajaji, M.; Colignon, D.; Marsic, N.; Antoine, X.; Geuzaine, C.: GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems (2016)
  11. El Bouajaji, M.; Thierry, B.; Antoine, X.; Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations (2015)
  12. Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas: Texture generation for photoacoustic elastography (2015)
  13. Haine, Ghislain: Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator (2014)
  14. Caldini-Queiros, Céline; Chabannes, Vincent; Ismail, Mourad; Pena, Goncalo; Prud’homme, Christophe; Szopos, Marcela; Tarabay, Ranine: Towards large-scale three-dimensional blood flow simulations in realistic geometries (2013)
  15. François-Lavet, V.; Henrotte, F.; Stainier, L.; Noels, L.; Geuzaine, C.: An energy-based variational model of ferromagnetic hysteresis for finite element computations (2013)
  16. Boubendir, Y.; Antoine, X.; Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation (2012)
  17. Durand, S.; Slodička, M.: Convergence of the mixed finite element method for Maxwell’s equations with nonlinear conductivity (2012)
  18. Prud’homme, Christophe; Chabannes, Vincent; Doyeux, Vincent; Ismail, Mourad; Samake, Abdoulaye: \textttFeel++: a computational framework for Galerkin methods and advanced numerical methods (2012)
  19. Durand, Stephane; Slodička, Marián: Fully discrete finite element method for Maxwell’s equations with nonlinear conductivity (2011)
  20. Slodička, Marián; Durand, Stephane: Fully discrete finite element scheme for Maxwell’s equations with non-linear boundary condition (2011)

1 2 next