GetDP: a General Environment for the Treatment of Discrete Problems. GetDP is a general finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. The main feature of GetDP is the closeness between the input data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. El Bouajaji, M.; Thierry, B.; Antoine, X.; Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations (2015)
  2. Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas: Texture generation for photoacoustic elastography (2015)
  3. Haine, Ghislain: Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator (2014)
  4. François-Lavet, V.; Henrotte, F.; Stainier, L.; Noels, L.; Geuzaine, C.: An energy-based variational model of ferromagnetic hysteresis for finite element computations (2013)
  5. Boubendir, Y.; Antoine, X.; Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation (2012)
  6. Prud’homme, Christophe; Chabannes, Vincent; Doyeux, Vincent; Ismail, Mourad; Samake, Abdoulaye: Feel++: a computational framework for Galerkin methods and advanced numerical methods (2012)
  7. Durand, Stephane; Slodička, Marián: Fully discrete finite element method for Maxwell’s equations with nonlinear conductivity (2011)
  8. Slodička, Marián; Durand, Stephane: Fully discrete finite element scheme for Maxwell’s equations with non-linear boundary condition (2011)
  9. Alnæs, Martin Sandve; Mardal, Kent-André: On the efficiency of symbolic computations combined with code generation for finite element methods (2010)
  10. Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar: Finite element exterior calculus: From Hodge theory to numerical stability (2010)
  11. Logg, Anders; Wells, Garth N.: DOLFIN: automated finite element computing (2010)
  12. Poignard, Clair: Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer (2008)
  13. Specogna, Ruben; Suuriniemi, Saku; Trevisan, Francesco: Geometric $T-\Omega$ approach to solve eddy currents coupled to electric circuits (2008)
  14. Terrel, A.R.; Scott, L.R.; Knepley, M.G.; Kirby, R.C.: Automated FEM discretizations for the Stokes equation (2008)
  15. Guenneau, S.; Zolla, F.; Nicolet, A.: Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability (2007)
  16. Logg, Anders: Automating the finite element method (2007)
  17. Movchan, A.B.; Movchan, N.V.; Guenneau, S.; McPhedran, R.C.: Asymptotic estimates for localized electromagnetic modes in doubly periodic structures with defects (2007)
  18. Kirby, Robert C.; Logg, Anders; Scott, L.Ridgway; Terrel, Andy R.: Topological optimization of the evaluation of finite element matrices (2006)
  19. Nicolet, André; Movchan, Alexander B.; Guenneau, Sébastien; Zolla, Frédéric: Asymptotic modelling of weakly twisted electrostatic problems (2006)
  20. Sjöberg, Daniel; Engström, Christian; Kristensson, Gerhard; Wall, David J.N.; Wellander, Niklas: A Floquet-Bloch decomposition of Maxwell’s equations applied to homogenization (2005)

1 2 next