FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). We believe that FFTW, which is free software, should become the FFT library of choice for most applications. The latest official release of FFTW is version 3.3.3, available from our download page. Version 3.3 introduced support for the AVX x86 extensions, a distributed-memory implementation on top of MPI, and a Fortran 2003 API. Version 3.3.1 introduced support for the ARM Neon extensions.

References in zbMATH (referenced in 311 articles , 1 standard article )

Showing results 1 to 20 of 311.
Sorted by year (citations)

1 2 3 ... 14 15 16 next

  1. Antti-Pekka Hynninen, Dmitry I. Lyakh: cuTT: A High-Performance Tensor Transpose Library for CUDA Compatible GPUs (2017) arXiv
  2. Clara Happ: Object-Oriented Software for Functional Data (2017) arXiv
  3. Engelberg, Shlomo: Elementary number theory and Rader’s FFT (2017)
  4. Hu, Xianfeng; Iwen, Mark; Kim, Hyejin: Rapidly computing sparse Legendre expansions via sparse Fourier transforms (2017)
  5. Peter Steinbach, Matthias Werner: gearshifft - The FFT Benchmark Suite for Heterogeneous Platforms (2017) arXiv
  6. Zulkoski, Edward; Bright, Curtis; Heinle, Albert; Kotsireas, Ilias; Czarnecki, Krzysztof; Ganesh, Vijay: Combining SAT solvers with computer algebra systems to verify combinatorial conjectures (2017)
  7. Anderson, Christopher R.: High order expanding domain methods for the solution of Poisson’s equation in infinite domains (2016)
  8. Balac, Stéphane; Fernandez, Arnaud: SPIP: a computer program implementing the interaction picture method for simulation of light-wave propagation in optical fibre (2016)
  9. Breiten, Tobias; Simoncini, Valeria; Stoll, Martin: Low-rank solvers for fractional differential equations (2016)
  10. Christlieb, Andrew; Lawlor, David; Wang, Yang: A multiscale sub-linear time Fourier algorithm for noisy data (2016)
  11. Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C.J.; Joo, S.: The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field (2016)
  12. de la Hoz, Francisco; Cuesta, Carlota M.: A pseudo-spectral method for a non-local KdV-Burgers equation posed on $\mathbbR$ (2016)
  13. de la Hoz, Francisco; Hmidi, Taoufik; Mateu, Joan; Verdera, Joan: Doubly connected $V$-states for the planar Euler equations (2016)
  14. de la Hoz, Francisco; Vadillo, Fernando: Numerical simulations of time-dependent partial differential equations (2016)
  15. Einkemmer, Lukas: High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code (2016)
  16. Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Jörn: FluSI: a novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization (2016)
  17. Feichtinger, Hans G.: Thoughts on numerical and conceptual harmonic analysis (2016)
  18. Garst, S.; Sterk, A.E.: The dynamics of a fold-and-twist map (2016)
  19. Gholami, Amir; Malhotra, Dhairya; Sundar, Hari; Biros, George: FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube (2016)
  20. Kulikov, Igor; Vorobyov, Eduard: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows (2016)

1 2 3 ... 14 15 16 next