2D DWT

Introduction to orthogonal transforms. With applications in data processing and analysis A systematic, unified treatment of orthogonal transform methods for signal processing, data analysis and communications, this book guides the reader from mathematical theory to problem solving in practice. It examines each transform method in depth, emphasizing the common mathematical principles and essential properties of each method in terms of signal decorrelation and energy compaction. The different forms of Fourier transform, as well as the Laplace, Z-, Walsh--Hadamard, Slant, Haar, Karhunen--Lo`eve and wavelet transforms, are all covered, with discussion of how each transform method can be applied to real-world experimental problems. Numerous practical examples and end-of-chapter problems, supported by online Matlab and C code and an instructor-only solutions manual, make this an ideal resource for students and practitioners alike.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element


References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Wang, Ruye: Introduction to orthogonal transforms. With applications in data processing and analysis (2012)