Software for Solving Optimal Control Problems. MISER3 is a suite of Fortran programs for solving continuous and discrete-time optimal control problems, optimal parameter selection problems, or a combination of both, subject to general constraints. The method used is based on the idea of control parametrization in which the controls are approximated by piecewise constant or piecewise linear (continuous) functions defined on suitable partitions of the time interval. The code then converts the problem into a nonlinear programming problem which is solved using a sequential quadratic programming algorithm.

References in zbMATH (referenced in 48 articles , 1 standard article )

Showing results 1 to 20 of 48.
Sorted by year (citations)

1 2 3 next

  1. Yang, Feng; Teo, Kok Lay; Loxton, Ryan; Rehbock, Volker; Li, Bin; Yu, Changjun; Jennings, Leslie: Visual MISER: an efficient user-friendly visual program for solving optimal control problems (2016)
  2. Al Helal, Zahra; Rehbock, Volker; Loxton, Ryan: Modelling and optimal control of blood glucose levels in the human body (2015)
  3. Adler, Stephen L.: The guide to PAMIR. Theory and use of parameterized adaptive multidimensional integration routines (2013)
  4. Yang, Youping; Xiao, Yanni; Wu, Jianhong: Pulse HIV vaccination: feasibility for virus eradication and optimal vaccination schedule (2013)
  5. Yu, Changjun; Li, Bin; Loxton, Ryan; Teo, Kok Lay: Optimal discrete-valued control computation (2013)
  6. Wei, W.; Teo, K.L.; Zhan, Z.D.: A numerical method for an impulsive optimal control problem with sensitivity consideration (2012)
  7. Zhou, Jingyang; Teo, Kok Lay; Zhou, Di; Zhao, Guohui: Nonlinear optimal feedback control for lunar module soft landing (2012)
  8. Loxton, R.; Teo, K.L.; Rehbock, V.: Robust suboptimal control of nonlinear systems (2011)
  9. Wu, C.Z.; Teo, K.L.; Volker, R.: Optimal control of switched system with time delay detection of switching signal (2011)
  10. Zhou, J.Y.; Teo, K.L.; Zhou, D.; Zhao, G.H.: Optimal guidance for lunar module soft landing (2010)
  11. Caccetta, Louis; van Loosen, Ian; Rehbock, Volker: Effective algorithms for a class of discrete valued optimal control problems (2009)
  12. Lee, Y.C.E.; Fung, E.H.K.; Lee, H.W.J.: Control parametrization enhancing technique and simulation on the design of a flexible rotating beam (2008)
  13. Liu, Yanqun; Eberhard, A.; Teo, Kok Lay: A numerical method for a class of mixed switching and impulsive optimal control problems (2006)
  14. Mehne, H.Hashemi; Borzabadi, A.Hashemi: A numerical method for solving optimal control problems using state parametrization (2006)
  15. Ruby, T.; Rehbock, V.: Numerical solutions of optimal switching control problems (2005)
  16. Lee, H.W.J.; Ali, M.M.; Wong, K.H.: Global optimization for a special class of discrete-valued optimal control problems (2004)
  17. Koh, Michael T.H.; Jennings, Leslie S.: Dynamic optimisation: A solution to the inverse dynamics problem of biomechanics using MISER3 (2002)
  18. Lee, W.R.; Rehbock, V.; Caccetta, L.; Teo, K.L.: Numerical solution of optimal control problems with discrete-valued system parameters (2002)
  19. Teo, K.L.; Lee, W.R.; Jennings, L.S.; Wang, S.; Liu, Y.: Numerical solution of an optimal control problem with variable time points in the objective function (2002)
  20. Wong, K.H.; Jennings, L.S.; Benyah, F.: The control parametrization enhancing transform for constrained time--delayed optimal control problems (2002)

1 2 3 next