Neweul-M² is a software package for the dynamic analysis of mechanical systems with the multibody system method. It comprises the computation of the symbolic equations of motion and the simulation of the dynamic behavior. It is running in Matlab using the Symbolic Math Toolbox for symbolic calculations. This offers the advantages of both, an of-the-shelf symbolic manipulator, being Maple or MuPad, and the vast numerical abilities of Matlab. Contact information for any questions can be found under More Information.

References in zbMATH (referenced in 18 articles )

Showing results 1 to 18 of 18.
Sorted by year (citations)

  1. Ihrle, S.; Lauxmann, M.; Eiber, A.; Eberhard, P.: Nonlinear modelling of the middle ear as an elastic multibody system -- applying model order reduction to acousto-structural coupled systems (2013)
  2. García-Vallejo, Daniel; Schiehlen, Werner: 3D-simulation of human walking by parameter optimization (2012)
  3. Pogorelov, D.Yu.: Simulation of constraints by compliant joints (2011)
  4. Tobias, Christoph; Eberhard, Peter: Stress recovery with Krylov-subspaces in reduced elastic multibody systems (2011)
  5. Kurz, T.; Eberhard, P.; Henninger, C.; Schiehlen, W.: From Neweul to Neweul-M$^2$: symbolical equations of motion for multibody system analysis and synthesis (2010)
  6. Hägele, Nora; Dignath, Florian: Vertical dynamics of the Maglev vehicle Transrapid (2009)
  7. Kreuzer, Edwin; Schlegel, Volker; Stache, Florian: Multibody simulation tool for the calculation of lashing loads on roRo ships (2007)
  8. Ackermann, Marko; Schiehlen, Werner: Dynamic analysis of human gait disorder and metabolical cost estimation (2006)
  9. Lehner, Michael; Eberhard, Peter: On the use of moment-matching to build reduced order models in flexible multibody dynamics (2006)
  10. Dignath, Florian; Breuninger, Christian; Eberhard, Peter; Kübler, Lars: Optimization of mechatronic systems using the software package NEWOPT/AIMS (2005)
  11. KÜbler, Lars; Henninger, Christoph; Eberhard, Peter: Multi-criteria optimization of a hexapod machine (2005)
  12. Auer, Ekaterina; Kecskeméthy, Andrés; Tändl, Martin; Traczinski, Holger: Interval algorithms in modeling of multibody systems (2004)
  13. Kral, Roland; Kreuzer, Edwin: Multibody systems and fluid-structure interactions with application to floating structures (1999)
  14. Fisette, P.; Vaneghem, B.: Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme (1996)
  15. Zaremba, Alexander T.: Adaptive control of flexible link manipulators using a pseudolink dynamic model (1996)
  16. Eberhard, P.; Bestle, D.: Multicriteria optimization of multibody systems (1994)
  17. Schwertassek, R.: Reduction of multibody simulation time by appropriate formulation of dynamical system equations (1994)
  18. Lesser, Martin: A geometrical interpretation of Kane’s equations (1992)