hypre

hypre is a software library for the solution of large, sparse linear systems on massively parallel computers. Its emphasis is on modern powerful and scalable preconditioners. hypre provides various conceptual interfaces to enable application users to access the library in the way they naturally think about their problems. This paper presents the conceptual interfaces in hypre. An overview of the preconditioners that are available in hypre is given, including some numerical results that show the efficiency of the library


References in zbMATH (referenced in 129 articles , 1 standard article )

Showing results 1 to 20 of 129.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Carsten Burstedde, Jose A. Fonseca, Stefan Kollet: Enhancing speed and scalability of the ParFlow simulation code (2017) arXiv
  2. la Cour Christensen, Max; Villa, Umberto; Engsig-Karup, Allan P.; Vassilevski, Panayot S.: Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (amge) approach (2017)
  3. Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim: Parallel preconditioners for monolithic solution of shear bands (2016)
  4. Bienz, Amanda; Falgout, Robert D.; Gropp, William; Olson, Luke N.; Schroder, Jacob B.: Reducing parallel communication in algebraic multigrid through sparsification (2016)
  5. Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong: A hybrid incremental projection method for thermal-hydraulics applications (2016)
  6. Gander, Martin J.; Neumüller, Martin: Analysis of a new space-time parallel multigrid algorithm for parabolic problems (2016)
  7. Huber, Markus; Gmeiner, Björn; Rüde, Ulrich; Wohlmuth, Barbara: Resilience for massively parallel multigrid solvers (2016)
  8. Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.; Nieken, U.: On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale (2016)
  9. Kalchev, D.Z.; Lee, C.S.; Villa, U.; Efendiev, Y.; Vassilevski, P.S.: Upscaling of mixed finite element discretization problems by the spectral AMGe method (2016)
  10. Kestyn, James; Polizzi, Eric; Tang, Ping Tak Peter: Feast eigensolver for non-Hermitian problems (2016)
  11. Klawonn, Axel; Lanser, Martin; Rheinbach, Oliver: A nonlinear FETI-DP method with an inexact coarse problem (2016)
  12. Kuchta, Miroslav; Nordaas, Magne; Verschaeve, Joris C.G.; Mortensen, Mikael; Mardal, Kent-Andre: Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains (2016)
  13. Lange, Michael; Mitchell, Lawrence; Knepley, Matthew G.; Gorman, Gerard J.: Efficient mesh management in firedrake using PETSc DMPlex (2016)
  14. Lee, Barry: Parallel preconditioners and multigrid solvers for stochastic polynomial chaos discretizations of the diffusion equation at the large scale. (2016)
  15. Liu, Hui; Wang, Kun; Chen, Zhangxin: A family of constrained pressure residual preconditioners for parallel reservoir simulations. (2016)
  16. Zampini, Stefano: PCBDDC: a class of robust dual-primal methods in PETSc (2016)
  17. Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.: A spectral scheme for Kohn-Sham density functional theory of clusters (2015)
  18. Casoni, E.; Jérusalem, A.; Samaniego, C.; Eguzkitza, B.; Lafortune, P.; Tjahjanto, D.D.; Sáez, X.; Houzeaux, G.; Vázquez, M.: Alya: computational solid mechanics for supercomputers (2015)
  19. Guittet, Arthur; Lepilliez, Mathieu; Tanguy, Sebastien; Gibou, Frédéric: Solving elliptic problems with discontinuities on irregular domains -- the Voronoi interface method (2015)
  20. Hoover, Alexander; Miller, Laura: A numerical study of the benefits of driving jellyfish bells at their natural frequency (2015)

1 2 3 ... 5 6 7 next