The FEniCS Project is a collaborative project for the development of innovative concepts and tools for automated scientific computing, with a particular focus on automated solution of differential equations by finite element methods. FEniCS has an extensive list of features for automated, efficient solution of differential equations, including automated solution of variational problems, automated error control and adaptivity, a comprehensive library of finite elements, high performance linear algebra and many more.

References in zbMATH (referenced in 106 articles )

Showing results 1 to 20 of 106.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Lee, Jeonghun J.; Mardal, Kent-Andre; Winther, Ragnar: Parameter-robust discretization and preconditioning of Biot’s consolidation model (2017)
  2. Ames, Ellery; Andréasson, Håkan; Logg, Anders: On axisymmetric and stationary solutions of the self-gravitating Vlasov system (2016)
  3. Anzt, Hartwig; Chow, Edmond; Saak, Jens; Dongarra, Jack: Updating incomplete factorization preconditioners for model order reduction (2016)
  4. Bauman, Paul T.; Stogner, Roy H.: GRINS: a multiphysics framework based on the libMesh finite element library (2016)
  5. Bommer, Vera; Yousept, Irwin: Optimal control of the full time-dependent Maxwell equations (2016)
  6. Burger, Martin; Pietschmann, Jan-Frederik: Flow characteristics in a crowded transport model (2016)
  7. Burstedde, Carsten; Holke, Johannes: A tetrahedral space-filling curve for nonconforming adaptive meshes (2016)
  8. Cotter, Colin J.; Kirby, Robert C.: Mixed finite elements for global tide models (2016)
  9. de Hoop, Maarten V.; Kepley, Paul; Oksanen, Lauri: On the construction of virtual interior point source travel time distances from the hyperbolic Neumann-to-Dirichlet map (2016)
  10. de los Reyes, Juan Carlos; Herzog, Roland; Meyer, Christian: Optimal control of static elastoplasticity in primal formulation (2016)
  11. Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas: MOLNs: a cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme (2016)
  12. Elfverson, Daniel; Hellman, Fredrik; Målqvist, Axel: A multilevel Monte Carlo method for computing failure probabilities (2016)
  13. Elvetun, Ole Løseth; Nielsen, Bjørn Fredrik: PDE-constrained optimization with local control and boundary observations: robust preconditioners (2016)
  14. Gao, Huadong: Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations (2016)
  15. Gao, Huadong; Sun, Weiwei: A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge (2016)
  16. Girouard, A.; Laugesen, R. S.; Siudeja, B. A.: Steklov eigenvalues and quasiconformal maps of simply connected planar domains (2016)
  17. Guillén-González, F.; Rodríguez Galván, J.R.: On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity (2016)
  18. Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; Calvin, Justus A.; Fann, George I.; Fosso-Tande, Jacob; Galindo, Diego; Hammond, Jeff R.; Hartman-Baker, Rebecca; Hill, Judith C.; Jia, Jun; Kottmann, Jakob S.; Yvonne Ou, M.-J.; Pei, Junchen; Ratcliff, Laura E.; Reuter, Matthew G.; Richie-Halford, Adam C.; Romero, Nichols A.; Sekino, Hideo; Shelton, William A.; Sundahl, Bryan E.; Thornton, W.Scott; Valeev, Edward F.; Vázquez-Mayagoitia, Álvaro; Vence, Nicholas; Yanai, Takeshi; Yokoi, Yukina: MADNESS: a multiresolution, adaptive numerical environment for scientific simulation (2016)
  19. Homolya, M.; Ham, D.A.: A parallel edge orientation algorithm for quadrilateral meshes (2016)
  20. Kashiwabara, Takahito; Oikawa, Issei; Zhou, Guanyu: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition (2016)

1 2 3 4 5 6 next

Further publications can be found at: http://fenicsproject.org/citing/