FEniCS

The FEniCS Project is a collaborative project for the development of innovative concepts and tools for automated scientific computing, with a particular focus on automated solution of differential equations by finite element methods. FEniCS has an extensive list of features for automated, efficient solution of differential equations, including automated solution of variational problems, automated error control and adaptivity, a comprehensive library of finite elements, high performance linear algebra and many more.


References in zbMATH (referenced in 516 articles , 2 standard articles )

Showing results 1 to 20 of 516.
Sorted by year (citations)

1 2 3 ... 24 25 26 next

  1. González, María; Strugaru, Magdalena: Stabilization and a posteriori error analysis of a mixed FEM for convection-diffusion problems with mixed boundary conditions (2021)
  2. Albuquerque, Yuri Flores; Laurain, Antoine; Sturm, Kevin: A shape optimization approach for electrical impedance tomography with point measurements (2020)
  3. Almonacid, Javier A.; Gatica, Gabriel N.; Oyarzúa, Ricardo; Ruiz-Baier, Ricardo: A new mixed finite element method for the (n)-dimensional Boussinesq problem with temperature-dependent viscosity (2020)
  4. Ambartsumyan, Ilona; Khattatov, Eldar; Nordbotten, Jan M.; Yotov, Ivan: A multipoint stress mixed finite element method for elasticity on simplicial grids (2020)
  5. Aslak W. Bergersen, Andreas Slyngstad, Sebastian Gjertsen, Alban Souche, Kristian Valen-Sendstad: turtleFSI: A Robust and Monolithic FEniCS-based Fluid-Structure Interaction Solver (2020) not zbMATH
  6. Bartels, Sören; Wachsmuth, Gerd: Numerical approximation of optimal convex shapes (2020)
  7. Bazilevs, Yuri; Kamensky, David; Moutsanidis, Georgios; Shende, Shaunak: Residual-based shock capturing in solids (2020)
  8. Bin Zubair Syed, H.; Farquharson, C.; MacLachlan, S.: Block preconditioning techniques for geophysical electromagnetics (2020)
  9. Brewster, Jack; Juniper, Matthew P.: Shape sensitivity of eigenvalues in hydrodynamic stability, with physical interpretation for the flow around a cylinder (2020)
  10. Brunetti, Matteo; Favata, Antonino; Paolone, Achille; Vidoli, Stefano: A mixed variational principle for the Föppl-von Kármán equations (2020)
  11. Bulle, Raphaël; Chouly, Franz; Hale, Jack S.; Lozinski, Alexei: Removing the saturation assumption in bank-Weiser error estimator analysis in dimension three (2020)
  12. Bürger, Raimund; Méndez, Paul E.; Ruiz-Baier, Ricardo: Convergence of H(div)-conforming schemes for a new model of sedimentation in circular clarifiers with a rotating rake (2020)
  13. Calo, Victor M.; Ern, Alexandre; Muga, Ignacio; Rojas, Sergio: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms (2020)
  14. Chao, Zhen; Xie, Dexuan; Sameh, Ahmed H.: Preconditioners for nonsymmetric indefinite linear systems (2020)
  15. Colmenares, Eligio; Gatica, Gabriel N.; Moraga, Sebastián; Ruiz-Baier, Ricardo: A fully-mixed finite element method for the steady state Oberbeck-Boussinesq system (2020)
  16. Constantinescu, Emil M.; Petra, Noémi; Bessac, Julie; Petra, Cosmin G.: Statistical treatment of inverse problems constrained by differential equations-based models with stochastic terms (2020)
  17. Damiani, Leonardo Hax; Kosakowski, Georg; Glaus, Martin A.; Churakov, Sergey V.: A framework for reactive transport modeling using FEniCS-Reaktoro: governing equations and benchmarking results (2020)
  18. DeCaria, Victor; Iliescu, Traian; Layton, William; McLaughlin, Michael; Schneier, Michael: An artificial compression reduced order model (2020)
  19. DeCaria, Victor; Layton, William; Zhao, Haiyun: A time-accurate, adaptive discretization for fluid flow problems (2020)
  20. Degen, Denise; Veroy, Karen; Wellmann, Florian: Certified reduced basis method in geosciences. Addressing the challenge of high-dimensional problems (2020)

1 2 3 ... 24 25 26 next


Further publications can be found at: http://fenicsproject.org/citing/