Chombo - Software for Adaptive Solutions of Partial Differential Equations. Chombo provides a set of tools for implementing finite difference methods for the solution of partial differential equations on block-structured adaptively refined rectangular grids. Both elliptic and time-dependent modules are included. Chombo supports calculations in complex geometries with both embedded boundaries and mapped grids, and Chombo also supports particle methods. Most parallel platforms are supported, and cross-platform self-describing file formats are included. The Chombo package is a product of the community of collaborators working with the Applied Numerical Algorithms Group (ANAG), part of the Computational Research Division at LBNL. Chombo is a Swahili word meaning ”tool” or ”container”.

References in zbMATH (referenced in 35 articles , 1 standard article )

Showing results 1 to 20 of 35.
Sorted by year (citations)

1 2 next

  1. Donna Calhoun, Carsten Burstedde: ForestClaw: A parallel algorithm for patch-based adaptive mesh refinement on a forest of quadtrees (2017) arXiv
  2. Myers, A.; Colella, P.; Straalen, B.van: A 4th-order particle-in-cell method with phase-space remapping for the Vlasov-Poisson equation (2017)
  3. Berzins, Martin; Beckvermit, Jacqueline; Harman, Todd; Bezdjian, Andrew; Humphrey, Alan; Meng, Qingyu; Schmidt, John; Wight, Charles: Extending the Uintah framework through the petascale modeling of detonation in arrays of high explosive devices (2016)
  4. Guzik, S.M.; Gao, X.; Olschanowsky, C.: A high-performance finite-volume algorithm for solving partial differential equations governing compressible viscous flows on structured grids (2016)
  5. Hatori, Tomoharu; Ito, Atsushi M.; Nunami, Masanori; Usui, Hideyuki; Miura, Hideaki: Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement (2016)
  6. Zhang, Qinghai: GePUP: generic projection and unconstrained PPE for fourth-order solutions of the incompressible Navier-Stokes equations with no-slip boundary conditions (2016)
  7. Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran: GRChombo: numerical relativity with adaptive mesh refinement (2015)
  8. Isaac, Tobin; Burstedde, Carsten; Wilcox, Lucas C.; Ghattas, Omar: Recursive algorithms for distributed forests of octrees (2015)
  9. McCorquodale, P.; Dorr, M.R.; Hittinger, J.A.F.; Colella, P.: High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids (2015)
  10. Sætra, Martin L.; Brodtkorb, André R.; Lie, Knut-Andreas: Efficient GPU-implementation of adaptive mesh refinement for the shallow-water equations (2015)
  11. Santilli, Edward; Scotti, Alberto: The stratified ocean model with adaptive refinement (SOMAR) (2015)
  12. de la Cruz, Raúl; Araya-Polo, Mauricio: Algorithm 942: Semi-stencil (2014)
  13. Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; Alder, Berni J.: Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement (2014)
  14. Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott: Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces (2014)
  15. Ogawa, Takanobu; Oran, Elaine S.; Gamezo, Vadim N.: Numerical study on flame acceleration and DDT in an inclined array of cylinders using an AMR technique (2013)
  16. Jiang, Chaowei; Cui, Shuxin; Feng, Xueshang: Solving the Euler and Navier-Stokes equations by the AMR-CESE method (2012)
  17. Jiang, R.-L.; Fang, C.; Chen, P.-F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics (2012)
  18. Keppens, R.; Meliani, Z.; Van Marle, A.J.; Delmont, P.; Vlasis, A.; van der Holst, B.: Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics (2012)
  19. Omelchenko, Y.A.; Karimabadi, H.: HYPERS: a unidimensional asynchronous framework for multiscale hybrid simulations (2012)
  20. Ziegler, Udo: Block-structured adaptive mesh refinement on curvilinear-orthogonal grids (2012)

1 2 next