Chombo - Software for Adaptive Solutions of Partial Differential Equations. Chombo provides a set of tools for implementing finite difference methods for the solution of partial differential equations on block-structured adaptively refined rectangular grids. Both elliptic and time-dependent modules are included. Chombo supports calculations in complex geometries with both embedded boundaries and mapped grids, and Chombo also supports particle methods. Most parallel platforms are supported, and cross-platform self-describing file formats are included. The Chombo package is a product of the community of collaborators working with the Applied Numerical Algorithms Group (ANAG), part of the Computational Research Division at LBNL. Chombo is a Swahili word meaning ”tool” or ”container”.

References in zbMATH (referenced in 27 articles , 1 standard article )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Berzins, Martin; Beckvermit, Jacqueline; Harman, Todd; Bezdjian, Andrew; Humphrey, Alan; Meng, Qingyu; Schmidt, John; Wight, Charles: Extending the Uintah framework through the petascale modeling of detonation in arrays of high explosive devices (2016)
  2. Zhang, Qinghai: GePUP: generic projection and unconstrained PPE for fourth-order solutions of the incompressible Navier-Stokes equations with no-slip boundary conditions (2016)
  3. Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran: GRChombo: numerical relativity with adaptive mesh refinement (2015)
  4. Isaac, Tobin; Burstedde, Carsten; Wilcox, Lucas C.; Ghattas, Omar: Recursive algorithms for distributed forests of octrees (2015)
  5. Sætra, Martin L.; Brodtkorb, André R.; Lie, Knut-Andreas: Efficient GPU-implementation of adaptive mesh refinement for the shallow-water equations (2015)
  6. de la Cruz, Raúl; Araya-Polo, Mauricio: Algorithm 942: Semi-stencil (2014)
  7. Ogawa, Takanobu; Oran, Elaine S.; Gamezo, Vadim N.: Numerical study on flame acceleration and DDT in an inclined array of cylinders using an AMR technique (2013)
  8. Jiang, Chaowei; Cui, Shuxin; Feng, Xueshang: Solving the Euler and Navier-Stokes equations by the AMR-CESE method (2012)
  9. Jiang, R.-L.; Fang, C.; Chen, P.-F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics (2012)
  10. Keppens, R.; Meliani, Z.; Van Marle, A.J.; Delmont, P.; Vlasis, A.; van der Holst, B.: Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics (2012)
  11. Omelchenko, Y.A.; Karimabadi, H.: HYPERS: a unidimensional asynchronous framework for multiscale hybrid simulations (2012)
  12. Ziegler, Udo: Block-structured adaptive mesh refinement on curvilinear-orthogonal grids (2012)
  13. Burstedde, Carsten; Wilcox, Lucas C.; Ghattas, Omar: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees (2011)
  14. Colella, P.; Dorr, M.R.; Hittinger, J.A.F.; Martin, D.F.: High-order, finite-volume methods in mapped coordinates (2011)
  15. Dubey, Anshu; Antypas, Katie; Daley, Christopher: Parallel algorithms for moving Lagrangian data on block structured Eulerian meshes (2011)
  16. Thornburg, Jonathan: Adaptive mesh refinement for characteristic grids (2011)
  17. Barad, Michael F.; Colella, Phillip; Schladow, S.Geoffrey: An adaptive cut-cell method for environmental fluid mechanics (2009)
  18. Henshaw, William D.; Schwendeman, Donald W.: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement (2008)
  19. Meglicki, Zdzisław; Gray, Stephen K.; Norris, Boyana: Multigrid FDTD with Chombo (2007)
  20. Nordén, Markus; Löf, Henrik; Rantakokko, Jarmo; Holmgren, Sverker: Dynamic data migration for structured AMR solvers (2007)

1 2 next