OpenFOAM
The OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. It includes tools for meshing, notably snappyHexMesh, a parallelised mesher for complex CAD geometries, and for pre- and post-processing. Almost everything (including meshing, and pre- and post-processing) runs in parallel as standard, enabling users to take full advantage of computer hardware at their disposal. By being open, OpenFOAM offers users complete freedom to customise and extend its existing functionality, either by themselves or through support from OpenCFD. It follows a highly modular code design in which collections of functionality (e.g. numerical methods, meshing, physical models, …) are each compiled into their own shared library. Executable applications are then created that are simply linked to the library functionality. OpenFOAM includes over 80 solver applications that simulate specific problems in engineering mechanics and over 170 utility applications that perform pre- and post-processing tasks, e.g. meshing, data visualisation, etc.
Keywords for this software
References in zbMATH (referenced in 234 articles )
Showing results 1 to 20 of 234.
Sorted by year (- Aboukhedr, M.; Georgoulas, A.; Marengo, M.; Gavaises, M.; Vogiatzaki, K.: Simulation of micro-flow dynamics at low capillary numbers using adaptive interface compression (2018)
- Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta Camps Santasmasas, Alistair J. Revell: LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method (2018)
- Aguerre, Horacio J.; Márquez Damián, Santiago; Gimenez, Juan M.; Nigro, Norberto M.: Development of a parallelised fluid solver for problems with mesh interfaces and deforming domains (2018)
- Alinovi, Edoardo; Bottaro, Alessandro: A boundary element method for Stokes flows with interfaces (2018)
- Anumolu, Lakshman; Trujillo, Mario F.: Gradient augmented level set method for phase change simulations (2018)
- Araújo, M. S. B.; Fernandes, C.; Ferrás, L. L.; Tuković, Ž.; Jasak, H.; Nóbrega, J. M.: A stable numerical implementation of integral viscoelastic models in the OpenFOAM$^\circledR$ computational library (2018)
- Bercin, Kutalmis M.; Xie, Zheng-Tong; Turnock, Stephen R.: Exploration of digital-filter and forward-stepwise synthetic turbulence generators and an improvement for their skewness-kurtosis (2018)
- Bergmann, Michel; Ferrero, Andrea; Iollo, Angelo; Lombardi, Edoardo; Scardigli, Angela; Telib, Haysam: A zonal Galerkin-free POD model for incompressible flows (2018)
- Chen, Boxiong; Oevermann, Michael: An Eulerian stochastic field cavitation model coupled to a pressure based solver (2018)
- C. Mysa, Ravi; Chandar, Dominic D. J.: Edge curvature effects of a square cylinder on self-sustained oscillations (2018)
- Cvijetić, Gregor; Gatin, Inno; Vukčević, Vuko; Jasak, Hrvoje: Harmonic balance developments in OpenFOAM (2018)
- Darwish, M.; Mangani, L.; Moukalled, F.: Implicit boundary conditions for coupled solvers (2018)
- Dong, Yidao; Deng, Xiaogang; Gao, Xiang; Xiong, Min; Wang, Guangxue: A comparative study of boundary conditions for the density-based solvers in the framework of OpenFOAM (2018)
- Drmač, Zlatko; Mezić, Igor; Mohr, Ryan: Data driven modal decompositions: analysis and enhancements (2018)
- Fürst, Jiří: Development of a coupled matrix-free LU-SGS solver for turbulent compressible flows (2018)
- Galanin, M. P.; Zhukov, V. T.; Klyushnev, N. V.; Kuzmina, K. S.; Lukin, V. V.; Marchevsky, I. K.; Rodin, A. S.: Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body (2018)
- Galindo-Lopez, S.; Salehi, F.; Cleary, M. J.; Masri, A. R.; Neuber, G.; Stein, O. T.; Kronenburg, A.; Varna, A.; Hawkes, E. R.; Sundaram, B.; Klimenko, A. Y.; Ge, Y.: A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion (2018)
- He, Chuangxin; Liu, Yingzheng; Yavuzkurt, Savas: Large-eddy simulation of circular jet mixing: lip- and inner-ribbed nozzles (2018)
- He, Ping; Mader, Charles A.; Martins, Joaquim R. R. A.; Maki, Kevin J.: An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM (2018)
- Klus, Stefan; Gelß, Patrick; Peitz, Sebastian; Schütte, Christof: Tensor-based dynamic mode decomposition (2018)