R is ‘GNU S’, a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for further information. CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load

References in zbMATH (referenced in 195 articles )

Showing results 1 to 20 of 195.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Adam Kaplan, Eric F. Lock: Prediction with Dimension Reduction of Multiple Molecular Data Sources for Patient Survival (2017) arXiv
  2. Amir Nikooienejad, Wenyi Wang, Valen E. Johnson: Bayesian Variable Selection in High Dimensional Survival Time Cancer Genomic Datasets using Nonlocal Priors (2017) arXiv
  3. Andrew Zammit-Mangion, Noel Cressie: FRK: An R Package for Spatial and Spatio-Temporal Prediction with Large Datasets (2017) arXiv
  4. Ashley Petersen, Noah Simon, Daniela Witten: SCALPEL: Extracting Neurons from Calcium Imaging Data (2017) arXiv
  5. Bryon Aragam, Jiaying Gu, Qing Zhou: Learning Large-Scale Bayesian Networks with the sparsebn Package (2017) arXiv
  6. Chakar, S.; Lebarbier, E.; Lévy-Leduc, C.; Robin, S.: A robust approach for estimating change-points in the mean of an $\operatornameAR(1)$ process (2017)
  7. Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan: Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering (2017)
  8. Clara Happ: Object-Oriented Software for Functional Data (2017) arXiv
  9. Dehmer, Matthias (ed.); Shi, Yongtang (ed.); Emmert-Streib, Frank (ed.): Computational network analysis with R. Applications in biology, medicine and chemistry (2017)
  10. Frederik Vissing Mikkelsen, Niels Richard Hansen: Learning Large Scale Ordinary Differential Equation Systems (2017) arXiv
  11. Gillian M. Raab, Beata Nowok, Chris Dibben: Guidelines for Producing Useful Synthetic Data (2017) arXiv
  12. González, Jorge; Wiberg, Marie: Applying test equating methods. Using R (2017)
  13. Haiming Zhou, Timothy Hanson, Jiajia Zhang: spBayesSurv: Fitting Bayesian Spatial Survival Models Using R (2017) arXiv
  14. Hong Zhang, Jiashun Jin, Zheyang Wu: Distributions and Statistical Power of Optimal Signal-Detection Methods In Finite Cases (2017) arXiv
  15. Jiwoong Kim: A Fast Algorithm for the Coordinate-wise Minimum Distance Estimation (2017) arXiv
  16. Jonatan Kallus, Jose Sanchez, Alexandra Jauhiainen, Sven Nelander, Rebecka Jornsten: ROPE: high-dimensional network modeling with robust control of edge FDR (2017) arXiv
  17. Julián-Moreno, Guillermo; López de Vergara, Jorge E.; González, Iván; de Pedro, Luis; Royuela-del-Val, Javier; Simmross-Wattenberg, Federico: Fast parallel $\alpha $-stable distribution function evaluation and parameter estimation using OpenCL in GPGPUs (2017)
  18. Julian Taylor, David Butler: R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis (2017) arXiv
  19. Kohlhase, Michael; Sperber, Wolfram: Software citations, information systems, and beyond (2017)
  20. Korkas, Karolos K.; Fryzlewicz, Piotr: Multiple change-point detection for non-stationary time series using wild binary segmentation (2017)

1 2 3 ... 8 9 10 next

Further publications can be found at: