cran

R is ‘GNU S’, a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for further information. CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load


References in zbMATH (referenced in 137 articles )

Showing results 1 to 20 of 137.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Andrew Zammit-Mangion, Noel Cressie: FRK: An R Package for Spatial and Spatio-Temporal Prediction with Large Datasets (2017) arXiv
  2. Ashley Petersen, Noah Simon, Daniela Witten: SCALPEL: Extracting Neurons from Calcium Imaging Data (2017) arXiv
  3. Chakar, S.; Lebarbier, E.; Lévy-Leduc, C.; Robin, S.: A robust approach for estimating change-points in the mean of an $\operatornameAR(1)$ process (2017)
  4. Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan: Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering (2017)
  5. Dehmer, Matthias (ed.); Shi, Yongtang (ed.); Emmert-Streib, Frank (ed.): Computational network analysis with R. Applications in biology, medicine and chemistry (2017)
  6. Haiming Zhou, Timothy Hanson, Jiajia Zhang: spBayesSurv: Fitting Bayesian Spatial Survival Models Using R (2017) arXiv
  7. Jiwoong Kim: A Fast Algorithm for the Coordinate-wise Minimum Distance Estimation (2017) arXiv
  8. Julian Taylor, David Butler: R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis (2017) arXiv
  9. Korkas, Karolos K.; Fryzlewicz, Piotr: Multiple change-point detection for non-stationary time series using wild binary segmentation (2017)
  10. Liu, Han; Wang, Lie: TIGER: A tuning-insensitive approach for optimally estimating Gaussian graphical models (2017)
  11. Miok, Viktorian; Wilting, Saskia M.; van Wieringen, Wessel N.: Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data (2017)
  12. Peter E. DeWitt, Samantha MaWhinney, Nichole E. Carlson: cpr: An R Package For Finding Parsimonious B-Spline Regression Models via Control Polygon Reduction and Control Net Reduction (2017) arXiv
  13. Rathijit Sen, Jianqiao Zhu, Jignesh M. Patel, Somesh Jha: ROSA: R Optimizations with Static Analysis (2017) arXiv
  14. Ross Jacobucci: regsem: Regularized Structural Equation Modeling (2017) arXiv
  15. Thong Pham, Paul Sheridan, Hidetoshi Shimodaira: PAFit: An R Package for Modeling and Estimating Preferential Attachment and Node Fitness in Temporal Complex Networks (2017) arXiv
  16. Waldemar W. Koczkodaj, Alicja Wolny-Dominiak: RatingScaleReduction package: stepwise rating scale item reduction without predictability loss (2017) arXiv
  17. Bernardi, Mauro; Catania, Leopoldo: Comparison of value-at-risk models using the MCS approach (2016)
  18. Biau, Gérard; Fischer, Aurélie; Guedj, Benjamin; Malley, James D.: COBRA: a combined regression strategy (2016)
  19. Bischl, Bernd; Lang, Michel; Kotthoff, Lars; Schiffner, Julia; Richter, Jakob; Studerus, Erich; Casalicchio, Giuseppe; Jones, Zachary M.: Mlr: machine learning in $\bold R$ (2016)
  20. Blaser, Rico; Fryzlewicz, Piotr: Random rotation ensembles (2016)

1 2 3 ... 5 6 7 next


Further publications can be found at: http://journal.r-project.org/