lattice

lattice: Lattice Graphics , Lattice is a powerful and elegant high-level data visualization system, with an emphasis on multivariate data, that is sufficient for typical graphics needs, and is also flexible enough to handle most nonstandard requirements. See ?Lattice for an introduction. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 27 articles , 1 standard article )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Atkins, Jamin; Sharma, Davinder Pal: Visualization of babble-speech interactions using Andrews curves (2016)
  2. Schmitt, Eric; Vakili, Kaveh: The FastHCS algorithm for robust PCA (2016)
  3. Cichosz, Paweł: Data mining algorithms. Explained using R (2015)
  4. Heiberger, Richard M.; Holland, Burt: Statistical analysis and data display. An intermediate course with examples in R (2015)
  5. Maj-Kańska, Aleksandra; Pokarowski, Piotr; Prochenka, Agnieszka: Delete or merge regressors for linear model selection (2015)
  6. Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi: Bayesian exploratory factor analysis (2014)
  7. Finch, W. Holmes; Bolin, Jocelyn E.; Kelley, Ken: Multilevel modeling using R (2014)
  8. Geraci, Marco; Bottai, Matteo: Linear quantile mixed models (2014)
  9. Lamigueiro, Oscar Perpiñán: Displaying time series, spatial, and space-time data with R (2014)
  10. Gałecki, Andrzej; Burzykowski, Tomasz: Linear mixed-effects models using R. A step-by-step approach (2013)
  11. Jones, Geoff: Book review of: D. Rizopoulos, Joint models for longitudinal and time-to-event data. With applications in R (2013)
  12. Kuhn, Max; Johnson, Kjell: Applied predictive modeling (2013)
  13. Zhao, Yanchang: R and data mining. Examples and case studies (2013)
  14. Cano, Emilio L.; Moguerza, Javier M.; Redchuk, Andrés: Six Sigma with R. Statistical engineering for process improvement. (2012)
  15. Alfons, Andreas; Kraft, Stefan; Templ, Matthias; Filzmoser, Peter: Simulation of close-to-reality population data for household surveys with application to EU-SILC (2011)
  16. Murrell, Paul: R graphics (2011)
  17. Robinson, Andrew P.; Hamann, Jeff D.: Forest analytics with R (2011)
  18. Vasishth, Shravan; Broe, Michael: The foundations of statistics: A simulation-based approach (2011)
  19. Williams, Graham: Data Mining with Rattle and R. The art of excavating data for knowledge discovery. (2011)
  20. Zhang, Zepu: Adaptive anchored inversion for Gaussian random fields using nonlinear data (2011)

1 2 next