References in zbMATH (referenced in 20 articles )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Kawasumi-Kita, Aiko; Ohtsuka, Daisuke; Morishita, Yoshihiro: Morphometric staging of organ development based on cross sectional images (2018)
  2. Stéphanie Bougeard; Stéphane Dray: Supervised Multiblock Analysis in R with the ade4 Package (2018)
  3. Cunningham, Erica; Ciampi, Antonio; Joober, Ridha; Labbe, Aurélie: Estimating and correcting optimism bias in multivariate PLS regression: application to the study of the association between single nucleotide polymorphisms and multivariate traits in attention deficit hyperactivity disorder (2016)
  4. Marlies Vervloet; Henk Kiers; Wim Van den Noortgate; Eva Ceulemans: PCovR: An R Package for Principal Covariates Regression (2015)
  5. Martin Bilodeau; Pierre Micheaux; Smail Mahdi: The R Package groc for Generalized Regression on Orthogonal Components (2015)
  6. Cristóbal Fresno; Mónica Balzarini; Elmer Fernández: lmdme: Linear Models on Designed Multivariate Experiments in R (2014)
  7. Shah, Jasmit; Datta, Somnath; Datta, Susmita: A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics (2014)
  8. Blum, M. G. B.; Nunes, M. A.; Prangle, D.; Sisson, S. A.: A comparative review of dimension reduction methods in approximate Bayesian computation (2013)
  9. Kuhn, Max; Johnson, Kjell: Applied predictive modeling (2013)
  10. Schlittgen, Rainer: Regression analyses with R (2013)
  11. Scutari, Marco; Mackay, Ian; Balding, David: Improving the efficiency of genomic selection (2013)
  12. Cano, Emilio L.; Moguerza, Javier M.; Redchuk, Andrés: Six Sigma with R. Statistical engineering for process improvement. (2012)
  13. Hay-Jahans, Christopher: An R companion to linear statistical models. (2012)
  14. Ron Wehrens; Pietro Franceschi: Meta-Statistics for Variable Selection: The R Package BioMark (2012)
  15. Scherbart, Alexandra; Nattkemper, Tim W.: Looking inside self-organizing map ensembles with resampling and negative correlation learning (2011)
  16. Wehrens, Ron: Chemometrics with R. Multivariate data analysis in the natural sciences and life sciences (2011)
  17. Culp, Mark; Michailidis, George; Johnson, Kjell: On multi-view learning with additive models (2009)
  18. Cao, Kim-Anh L^e; Rossouw, Debra; Robert-Granié, Christèle; Besse, Philippe: A sparse PLS for variable selection when integrating omics data (2008)
  19. Ignacio González; Sébastien Déjean; Pascal Martin; Alain Baccini: CCA: An R Package to Extend Canonical Correlation Analysis (2008)
  20. Max Kuhn: Building Predictive Models in R Using the caret Package (2008)