SC Toolbox

Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB. The Schwarz-Christoffel Toolbox (SC Toolbox) for MATLAB, first released in 1994, made possible the interactive creation and visualization of conformal maps to regions bounded by polygons. The most recent release supports new features, including an object-oriented command-line interface model, new algorithms for multiply elongated and multiple-sheeted regions, and a module for solving Laplace’s equation on a polygon with Dirichlet and homogeneous Neumann conditions. Brief examples are given to demonstrate the new capabilities. (Source: http://dl.acm.org/)


References in zbMATH (referenced in 188 articles , 1 standard article )

Showing results 1 to 20 of 188.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Barth, Dominik; König, Joachim; Wenz, Andreas: An approach for computing families of multi-branch-point covers and applications for symplectic Galois groups (2020)
  2. Cui, Hanwen; Ren, Weiqing: Interface profile near the contact line in electro-wetting on dielectric (2020)
  3. Doan, Tung; Le-Quang, Hung; To, Quy-Dong: Effective elastic stiffness of 2D materials containing nanovoids of arbitrary shape (2020)
  4. Han, Yucen; Majumdar, Apala; Zhang, Lei: A reduced study for nematic equilibria on two-dimensional polygons (2020)
  5. Badreddine, Mohamed; DeLillo, Thomas K.; Sahraei, Saman: A comparison of some numerical conformal mapping methods for simply and multiply connected domains (2019)
  6. Bauer, Ulrich; Lauf, Wolfgang: Conformal mapping onto a doubly connected circular arc polygonal domain (2019)
  7. Bezrodnykh, Sergei; Bogatyrëv, Andrei; Goreinov, Sergei; Grigor’ev, Oleg; Hakula, Harri; Vuorinen, Matti: On capacity computation for symmetric polygonal condensers (2019)
  8. Borkowski, M.; Kuras, R.: Application of conformal mappings and the numerical analysis of conditioning of the matrices in Trefftz method for some boundary value problems (2019)
  9. De Marchi, S.; Martínez, A.; Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation (2019)
  10. Gopal, Abinand; Trefethen, Lloyd N.: Representation of conformal maps by rational functions (2019)
  11. Hakula, Harri; Quach, Tri; Rasila, Antti: The conjugate function method and conformal mappings in multiply connected domains (2019)
  12. Andrade, David; Nachbin, André: Two-dimensional surface wave propagation over arbitrary ridge-like topographies (2018)
  13. Andrade, D.; Nachbin, A.: A three-dimensional Dirichlet-to-Neumann operator for water waves over topography (2018)
  14. Anselmo, Tiago; Nelson, Rhodri; Carneiro da Cunha, Bruno; Crowdy, Darren G.: Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painlevé VI (2018)
  15. Bezrodnykh, Sergeĭ I.: The Lauricella hypergeometric function (F_D^(N)), the Riemann-Hilbert problem, and some applications (2018)
  16. Bogatyrev, A. B.; Grigor’ev, O. A.: Conformal mapping of rectangular heptagons. II (2018)
  17. Carro, María J.; Ortiz-Caraballo, Carmen: On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains (2018)
  18. Cavoretto, Roberto; De Rossi, Alessandra; Perracchione, Emma: Optimal selection of local approximants in RBF-PU interpolation (2018)
  19. Chaudhry, Jehanzeb H.; Burch, Nathanial; Estep, Donald: Efficient distribution estimation and uncertainty quantification for elliptic problems on domains with stochastic boundaries (2018)
  20. Choi, Doo Sung; Helsing, Johan; Lim, Mikyoung: Corner effects on the perturbation of an electric potential (2018)

1 2 3 ... 8 9 10 next


Further publications can be found at: http://www.math.udel.edu/~driscoll/papers/