VGAM

R package VGAM: Vector Generalized Linear and Additive Models , Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs). This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 63 articles , 3 standard articles )

Showing results 1 to 20 of 63.
Sorted by year (citations)

1 2 3 4 next

  1. Karavarsamis, N.; Huggins, R. M.: Two-stage approaches to the analysis of occupancy data. II: The heterogeneous model and conditional likelihood (2019)
  2. Bura, Efstathia; Duarte, S.; Forzani, L.; Smucler, E.; Sued, M.: Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models (2018)
  3. Tsagris, Michail; Stewart, Connie: A Dirichlet regression model for compositional data with zeros (2018)
  4. Huang, A.: On generalised estimating equations for vector regression (2017)
  5. Jouni Helske: KFAS: Exponential Family State Space Models in R (2017) not zbMATH
  6. Marra, Giampiero; Radice, Rosalba: Bivariate copula additive models for location, scale and shape (2017)
  7. Marra, Giampiero; Radice, Rosalba: A joint regression modeling framework for analyzing bivariate binary data in (\mathsfR) (2017)
  8. Mauricio Sarrias and Ricardo Daziano: Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package (2017) not zbMATH
  9. Michael J. Wurm, Paul J. Rathouz, Bret M. Hanlon: Regularized Ordinal Regression and the ordinalNet R Package (2017) arXiv
  10. Paul-Christian Bürkner: brms: An R Package for Bayesian Multilevel Models Using Stan (2017) not zbMATH
  11. Rafael Moral; John Hinde; Clarice Demétrio: Half-Normal Plots and Overdispersed Models in R: The hnp Package (2017) not zbMATH
  12. Sáez-Castillo, Antonio J.; Conde-Sánchez, Antonio: Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model (2017)
  13. Tobias Liboschik; Konstantinos Fokianos; Roland Fried: tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models (2017) not zbMATH
  14. Worku, Hailemichael M.; De Rooij, Mark: Properties of ideal point classification models for bivariate binary data (2017)
  15. Fullerton, Andrew S.; Xu, Jun: Ordered regression models. Parallel, partial, and non-parallel alternatives (2016)
  16. Klein, Nadja; Kneib, Thomas: Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach (2016)
  17. M. Wojtys; Giampiero Marra; Rosalba Radice: Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel (2016) not zbMATH
  18. Pierre Lafaye de Micheaux and Viet Tran: PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R (2016) not zbMATH
  19. Sellers, Kimberly F.; Morris, Darcy Steeg; Balakrishnan, Narayanaswamy: Bivariate Conway-Maxwell-Poisson distribution: formulation, properties, and inference (2016)
  20. Colin Gillespie: Fitting Heavy Tailed Distributions: The poweRlaw Package (2015) not zbMATH

1 2 3 4 next