VGAM: Vector Generalized Linear and Additive Models , Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs). This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology. (Source:

References in zbMATH (referenced in 31 articles , 2 standard articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Michael J. Wurm, Paul J. Rathouz, Bret M. Hanlon: Regularized Ordinal Regression and the ordinalNet R Package (2017) arXiv
  2. Sáez-Castillo, Antonio J.; Conde-Sánchez, Antonio: Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model (2017)
  3. Fullerton, Andrew S.; Xu, Jun: Ordered regression models. Parallel, partial, and non-parallel alternatives (2016)
  4. Klein, Nadja; Kneib, Thomas: Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach (2016)
  5. de Haan, Laurens; Tank, Albert Klein; Neves, Cláudia: On tail trend detection: modeling relative risk (2015)
  6. Leha, Andreas: Statistical methods to enhance clinical prediction with high-dimensional data and ordinal response (2015)
  7. Yee, Thomas W.: Vector generalized linear and additive models. With an implementation in R (2015)
  8. Anestis Touloumis: R Package multgee: A Generalized Estimating Equations Solver for Multinomial Responses (2014) arXiv
  9. Asad Hasan, Wang Zhiyu, Alireza S. Mahani: Fast Estimation of Multinomial Logit Models: R Package mnlogit (2014) arXiv
  10. Kateri, Maria: Contingency table analysis. Methods and implementation using R (2014)
  11. Yee, Thomas W.; Hadi, Alfian F.: Row-column interaction models, with an R implementation (2014)
  12. Anderson, Carolyn J.: Multidimensional item response theory models with collateral information as Poisson regression models (2013)
  13. Dormann, Carsten F.: Parametric statistics. Distributions, maximum likelihood and GLM in R (2013)
  14. Dunstan, Piers K.; Foster, Scott D.; Hui, Francis K.C.; Warton, David I.: Finite mixture of regression modeling for high-dimensional count and biomass data in ecology (2013)
  15. Gilleland, Eric; Ribatet, Mathieu; Stephenson, Alec G.: A software review for extreme value analysis (2013)
  16. Krämer, Nicole; Brechmann, Eike C.; Silvestrini, Daniel; Czado, Claudia: Total loss estimation using copula-based regression models (2013)
  17. Klar, Bernhard; Lindner, Franziska; Meintanis, Simos G.: Specification tests for the error distribution in GARCH models (2012)
  18. Stoklosa, Jakub; Huggins, Richard M.: A robust P-spline approach to closed population capture-recapture models with time dependence and heterogeneity (2012)
  19. Ahn, Jaeil; Mukherjee, Bhramar; Gruber, Stephen B.; Sinha, Samiran: Missing exposure data in stereotype regression model: application to matched case-control study with disease subclassification (2011)
  20. Huggins, Richard; Hwang, Wen-Han: A review of the use of conditional likelihood in capture-recapture experiments (2011)

1 2 next