WinBUGS

WinBUGS is part of the BUGS project, which aims to make practical MCMC methods available to applied statisticians. WinBUGS can use either a standard ’point-and-click’ windows interface for controlling the analysis, or can construct the model using a graphical interface called DoodleBUGS. WinBUGS is a stand-alone program, although it can be called from other software.


References in zbMATH (referenced in 532 articles , 2 standard articles )

Showing results 1 to 20 of 532.
Sorted by year (citations)

1 2 3 ... 25 26 27 next

  1. Li, Kan; Luo, Sheng: Bayesian functional joint models for multivariate longitudinal and time-to-event data (2019)
  2. Broemeling, Lyle D.: Bayesian inference for stochastic processes (2018)
  3. Consonni, Guido; Fouskakis, Dimitris; Liseo, Brunero; Ntzoufras, Ioannis: Prior distributions for objective Bayesian analysis (2018)
  4. Dhavale, Dileep G.; Sarkis, Joseph: Stochastic internal rate of return on investments in sustainable assets generating carbon credits (2018)
  5. Duan, Fengjun; Wang, Guanjun; Wang, Huan: Inverse Gaussian process models for bivariate degradation analysis: a Bayesian perspective (2018)
  6. Edgar Merkle; Yves Rosseel: blavaan: Bayesian Structural Equation Models via Parameter Expansion (2018)
  7. Gao, Guangyuan; Meng, Shengwang: Stochastic claims reserving via a Bayesian spline model with random loss ratio effects (2018)
  8. Giordano, Ryan; Broderick, Tamara; Jordan, Michael I.: Covariances, robustness, and variational Bayes (2018)
  9. Jan Luts; Shen Wang; John Ormerod; Matt Wand: Semiparametric Regression Analysis via Infer.NET (2018)
  10. Jingyi Guo; Andrea Riebler: meta4diag: Bayesian Bivariate Meta-Analysis of Diagnostic Test Studies for Routine Practice (2018)
  11. Jing Zhao; Jian’an Luan; Peter Congdon: Bayesian Linear Mixed Models with Polygenic Effects (2018)
  12. Kim, Hea-Jung: Bayesian hierarchical robust factor analysis models for partially observed sample-selection data (2018)
  13. Lindqvist, Bo H.; Taraldsen, Gunnar: On the proper treatment of improper distributions (2018)
  14. Migliorati, Sonia; Di Brisco, Agnese Maria; Ongaro, Andrea: A new regression model for bounded responses (2018)
  15. Morrison, Rebecca E.; Oliver, Todd A.; Moser, Robert D.: Representing model inadequacy: a stochastic operator approach (2018)
  16. Okada, Kensuke; Mayekawa, Shin-ichi: Post-processing of Markov chain Monte Carlo output in Bayesian latent variable models with application to multidimensional scaling (2018)
  17. Pinto Junior, Jony Arrais; Da Silva, Patrícia Viana: Bayesian variable selection methods for log-Gaussian Cox processes (2018)
  18. Romeo, Jose S.; Meyer, Renate; Gallardo, Diego I.: Bayesian bivariate survival analysis using the power variance function copula (2018)
  19. Wagner Bonat: Multiple Response Variables Regression Models in R: The mcglm Package (2018)
  20. Alvares, Danilo; Armero, Carmen; Forte, Anabel; Chopin, Nicolas: Sequential Monte Carlo methods in random intercept models for longitudinal data (2017)

1 2 3 ... 25 26 27 next