WinBUGS is part of the BUGS project, which aims to make practical MCMC methods available to applied statisticians. WinBUGS can use either a standard ’point-and-click’ windows interface for controlling the analysis, or can construct the model using a graphical interface called DoodleBUGS. WinBUGS is a stand-alone program, although it can be called from other software.

References in zbMATH (referenced in 563 articles , 2 standard articles )

Showing results 1 to 20 of 563.
Sorted by year (citations)

1 2 3 ... 27 28 29 next

  1. Amaral Turkman, Maria Antónia; Paulino, Carlos Daniel; Müller, Peter: Computational Bayesian statistics. An introduction (2019)
  2. Broemeling, Lyle D.: Bayesian analysis of time series (2019)
  3. Cox, Marco; van de Laar, Thijs; de Vries, Bert: A factor graph approach to automated design of Bayesian signal processing algorithms (2019)
  4. Djeundje, Viani Biatat; Crook, Jonathan: Identifying hidden patterns in credit risk survival data using generalised additive models (2019)
  5. Grollemund, Paul-Marie; Abraham, Christophe; Baragatti, Meïli; Pudlo, Pierre: Bayesian functional linear regression with sparse step functions (2019)
  6. Hong, Maxwell R.; Jacobucci, Ross: Book review: K. J. Grimm et al., Review of growth modeling: structural equation and multilevel modeling approaches. (2019)
  7. Jonathon Love; Ravi Selker; Maarten Marsman; Tahira Jamil; Damian Dropmann; Josine Verhagen; Alexander Ly; Quentin Gronau; Martin Šmíra; Sacha Epskamp; Dora Matzke; Anneliese Wild; Patrick Knight; Jeffrey Rouder; Richard Morey; Eric-Jan Wagenmakers: JASP: Graphical Statistical Software for Common Statistical Designs (2019) not zbMATH
  8. Karavarsamis, N.; Huggins, R. M.: Two-stage approaches to the analysis of occupancy data. II: The heterogeneous model and conditional likelihood (2019)
  9. Li, Kan; Luo, Sheng: Bayesian functional joint models for multivariate longitudinal and time-to-event data (2019)
  10. Seongil Jo; Taeryon Choi; Beomjo Park; Peter Lenk: bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors (2019) not zbMATH
  11. Broemeling, Lyle D.: Bayesian inference for stochastic processes (2018)
  12. Consonni, Guido; Fouskakis, Dimitris; Liseo, Brunero; Ntzoufras, Ioannis: Prior distributions for objective Bayesian analysis (2018)
  13. Dhavale, Dileep G.; Sarkis, Joseph: Stochastic internal rate of return on investments in sustainable assets generating carbon credits (2018)
  14. Diouf, Abdoulaye; Camara, Baba Issa; Ngom, Diène; Toumi, Héla; Felten, Vincent; Masfaraud, Jean-François; Férard, Jean-François: Bayesian inference of a dynamical model evaluating Deltamethrin effect on \textitDaphnia survival (2018)
  15. Dobson, Annette J.; Barnett, Adrian G.: An introduction to generalized linear models (2018)
  16. Duan, Fengjun; Wang, Guanjun; Wang, Huan: Inverse Gaussian process models for bivariate degradation analysis: a Bayesian perspective (2018)
  17. Edgar Merkle; Yves Rosseel: blavaan: Bayesian Structural Equation Models via Parameter Expansion (2018) not zbMATH
  18. Gao, Guangyuan; Meng, Shengwang: Stochastic claims reserving via a Bayesian spline model with random loss ratio effects (2018)
  19. Giordano, Ryan; Broderick, Tamara; Jordan, Michael I.: Covariances, robustness, and variational Bayes (2018)
  20. Jan Luts; Shen Wang; John Ormerod; Matt Wand: Semiparametric Regression Analysis via Infer.NET (2018) not zbMATH

1 2 3 ... 27 28 29 next