R2WinBUGS

R2WinBUGS: Running WinBUGS and OpenBUGS from R / S-PLUS , Using this package, it is possible to call a BUGS model, summarize inferences and convergence in a table and graph, and save the simulations in arrays for easy access in R / S-PLUS. In S-PLUS, the openbugs functionality and the windows emulation functionality is not yet available. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 55 articles )

Showing results 1 to 20 of 55.
Sorted by year (citations)

1 2 3 next

  1. Cowles, Mary Kathryn; Bonett, Stephen; Seedorff, Michael: Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration (2018)
  2. Jing Zhao; Jian’an Luan; Peter Congdon: Bayesian Linear Mixed Models with Polygenic Effects (2018)
  3. Barrado, Leandro García; Coart, Els; Burzykowski, Tomasz: Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test (2017)
  4. Ganjali, M.; Moradzadeh, N.; Baghfalaki, T.: Bayesian testing of agreement criteria under order constraints (2017)
  5. Thanoon, Thanoon Y.; Adnan, Robiah: Model comparison of linear and nonlinear Bayesian structural equation models with dichotomous data (2017)
  6. Elghafghuf, Adel; Stryhn, Henrik: Correlated versus uncorrelated frailty Cox models: a comparison of different estimation procedures (2016)
  7. Jingjing Yang, Peng Ren: BFDA: A Matlab Toolbox for Bayesian Functional Data Analysis (2016) arXiv
  8. Zhengzheng Zhang and Richard Parker and Christopher Charlton and George Leckie and William Browne: R2MLwiN: A Package to Run MLwiN from within R (2016)
  9. Casals, Martí; Langohr, Klaus; Carrasco, Josep Lluís; Rönnegård, Lars: Parameter estimation of Poisson generalized linear mixed models based on three different statistical principles: a simulation study (2015)
  10. Ferreira, Guillermo; Figueroa-Zúñiga, Jorge I.; de Castro, Mário: Partially linear beta regression model with autoregressive errors (2015)
  11. Fried, Roland; Agueusop, Inoncent; Bornkamp, Björn; Fokianos, Konstantinos; Fruth, Jana; Ickstadt, Katja: Retrospective Bayesian outlier detection in INGARCH series (2015)
  12. Khandoker Bakar; Sujit Sahu: spTimer: Spatio-Temporal Bayesian Modeling Using R (2015)
  13. Mostafa, Ayman A.: Bayesian analysis technique for generalized Cox’s proportional hazards model using BUGS: applications in medical data (2015)
  14. Müller, Peter; Quintana, Fernando Andrés; Jara, Alejandro; Hanson, Tim: Bayesian nonparametric data analysis (2015)
  15. Patrick Brown: Model-Based Geostatistics the Easy Way (2015)
  16. Schwarzer, Guido; Carpenter, James R.; Rücker, Gerta: Meta-analysis with R (2015)
  17. Scutari, Marco; Denis, Jean-Baptiste: Bayesian networks. With examples in R (2015)
  18. Blangiardo, Marta; Baio, Gianluca: Evidence of bias in the Eurovision Song Contest: modelling the votes using Bayesian hierarchical models (2014)
  19. Tan, Linda S. L.; Nott, David J.: A stochastic variational framework for fitting and diagnosing generalized linear mixed models (2014)
  20. Weihs, Claus; Mersmann, Olaf; Ligges, Uwe: Foundations of statistical algorithms. With references to R packages (2014)

1 2 3 next