forecast

R package forecast: Forecasting functions for time series and linear models , Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 94 articles , 1 standard article )

Showing results 1 to 20 of 94.
Sorted by year (citations)

1 2 3 4 5 next

  1. Basellini, Ugofilippo; Kjærgaard, Søren; Camarda, Carlo Giovanni: An age-at-death distribution approach to forecast cohort mortality (2020)
  2. Bildosola, Iñaki; Garechana, Gaizka; Zarrabeitia, Enara; Cilleruelo, Ernesto: Characterization of strategic emerging technologies: the case of big data (2020)
  3. Bozikas, Apostolos; Pitselis, Georgios: Incorporating crossed classification credibility into the Lee-Carter model for multi-population mortality data (2020)
  4. Esam Mahdi: portes: An R Package for Portmanteau Tests in Time Series Models (2020) arXiv
  5. Izhar Asael Alonzo Matamoros, Cristian Andres Cruz Torres: varstan: An R package for Bayesian analysis of structured time series models with Stan (2020) arXiv
  6. Neeraj Dhanraj Bokde; Gorm Bruun Andersen: ForecastTB - An R Package as a Test-bench for Forecasting Methods Comparison (2020) arXiv
  7. Nystrup, Peter; Lindström, Erik; Pinson, Pierre; Madsen, Henrik: Temporal hierarchies with autocorrelation for load forecasting (2020)
  8. Spiliotis, Evangelos; Assimakopoulos, Vassilios; Makridakis, Spyros: Generalizing the Theta method for automatic forecasting (2020)
  9. Annette Möller, Jürgen Groß: Probabilistic Temperature Forecasting with a Heteroscedastic Autoregressive Ensemble Postprocessing model (2019) arXiv
  10. Cerqueira, Vitor; Torgo, Luís; Pinto, Fábio; Soares, Carlos: Arbitrage of forecasting experts (2019)
  11. Di Gangi, Leonardo; Lapucci, M.; Schoen, F.; Sortino, A.: An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series (2019)
  12. Goin, Dana E.; Ahern, Jennifer: Identification of spikes in time series (2019)
  13. Guibert, Quentin; Lopez, Olivier; Piette, Pierrick: Forecasting mortality rate improvements with a high-dimensional VAR (2019)
  14. Huber, Jakob; Müller, Sebastian; Fleischmann, Moritz; Stuckenschmidt, Heiner: A data-driven newsvendor problem: from data to decision (2019)
  15. Khan, Atikur R.; Hassani, Hossein: Dependence measures for model selection in singular spectrum analysis (2019)
  16. Li, Han; Tang, Qihe: Analyzing mortality bond indexes via hierarchical forecast reconciliation (2019)
  17. Peña, Daniel; Smucler, Ezequiel; Yohai, Victor J.: Forecasting multiple time series with one-sided dynamic principal components (2019)
  18. Ramasubramanian, Karthik; Singh, Abhishek: Machine learning using R. With time series and industry-based use cases in R (2019)
  19. Rendon-Sanchez, Juan F.; de Menezes, Lilian M.: Structural combination of seasonal exponential smoothing forecasts applied to load forecasting (2019)
  20. Santos, James D.; Costa, José M. J.: An algorithm for prior elicitation in dynamic Bayesian models for proportions with the logit link function (2019)

1 2 3 4 5 next