OOQP

OOQP is an object-oriented C++ package, based on a primal-dual interior-point method, for solving convex quadratic programming problems (QPs). It contains code that can be used ”out of the box” to solve a variety of structured QPs, including general sparse QPs, QPs arising from support vector machines, Huber regression problems, and QPs with bound constraints. OOQP also can be used as a framework can be used to design efficient solvers for new classes of structured QPs. Its design allows for easy substitution of the linear algebra modules, allowing different standard linear algebra packages to be tried.


References in zbMATH (referenced in 34 articles , 1 standard article )

Showing results 1 to 20 of 34.
Sorted by year (citations)

1 2 next

  1. Andersson, Joel A. E.; Gillis, Joris; Horn, Greg; Rawlings, James B.; Diehl, Moritz: CasADi: a software framework for nonlinear optimization and optimal control (2019)
  2. Boland, Natashia; Christiansen, Jeffrey; Dandurand, Brian; Eberhard, Andrew; Oliveira, Fabricio: A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems (2019)
  3. Petra, Cosmin G.; Potra, Florian A.: A homogeneous model for monotone mixed horizontal linear complementarity problems (2019)
  4. Kim, Kibaek; Zavala, Victor M.: Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs (2018)
  5. Kouzoupis, Dimitris; Frison, Gianluca; Zanelli, Andrea; Diehl, Moritz: Recent advances in quadratic programming algorithms for nonlinear model predictive control (2018)
  6. Quirynen, Rien; Gros, Sébastien; Houska, Boris; Diehl, Moritz: Lifted collocation integrators for direct optimal control in ACADO toolkit (2017)
  7. Zanon, Mario; Boccia, Andrea; Palma, Vryan Gil S.; Parenti, Sonja; Xausa, Ilaria: Direct optimal control and model predictive control (2017)
  8. Hartley, Edward N.; Maciejowski, Jan M.: Field programmable gate array based predictive control system for spacecraft rendezvous in elliptical orbits (2015)
  9. Niu, Lingfeng; Zhou, Ruizhi; Zhao, Xi; Shi, Yong: Two new decomposition algorithms for training bound-constrained support vector machines (2015)
  10. Ferreau, Hans Joachim; Kirches, Christian; Potschka, Andreas; Bock, Hans Georg; Diehl, Moritz: qpOASES: a parametric active-set algorithm for quadratic programming (2014)
  11. Büskens, Christof; Wassel, Dennis: The ESA NLP solver WORHP (2013)
  12. Lubin, Miles; Martin, Kipp; Petra, Cosmin G.; Sandıkçı, Burhaneddin: On parallelizing dual decomposition in stochastic integer programming (2013)
  13. Friedlander, M. P.; Orban, D.: A primal-dual regularized interior-point method for convex quadratic programs (2012)
  14. Gondzio, Jacek: Interior point methods 25 years later (2012)
  15. Munsell, Brent C.; Temlyakov, Andrew; Styner, Martin; Wang, Song: Pre-organizing shape instances for landmark-based shape correspondence (2012) ioport
  16. Petra, Cosmin G.; Anitescu, Mihai: A preconditioning technique for Schur complement systems arising in stochastic optimization (2012)
  17. Kirches, Christian; Bock, Hans Georg; Schlöder, Johannes P.; Sager, Sebastian: A factorization with update procedures for a KKT matrix arising in direct optimal control (2011)
  18. Niu, Lingfeng; Yuan, Ya-Xiang: A parallel decomposition algorithm for training multiclass kernel-based vector machines (2011)
  19. Woodsend, Kristian; Gondzio, Jacek: Exploiting separability in large-scale linear support vector machine training (2011)
  20. D’apuzzo, Marco; De Simone, Valentina; Di Serafino, Daniela: Starting-point strategies for an infeasible potential reduction method (2010)

1 2 next