KANTBP
KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Nature of problem: In the hyperspherical adiabatic approach [2-4], a multi-dimensional Schrödinger equation for a two-electron system [5] or a hydrogen atom in magnetic field [6] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations.
(Source: http://cpc.cs.qub.ac.uk/summaries/)
Keywords for this software
References in zbMATH (referenced in 13 articles , 1 standard article )
Showing results 1 to 13 of 13.
Sorted by year (- Gusev, A.A.; Gerdt, V.P.; Hai, L.L.; Derbov, V.L.; Vinitsky, S.I.; Chuluunbaatar, O.: Symbolic-numeric algorithms for solving BVPs for a system of ODEs of the second order: multichannel scattering and eigenvalue problems (2016)
- Gusev, A.A.; Le Hai, L.; Chuluunbaatar, O.; Ulziibayar, V.; Vinitsky, S.I.; Derbov, V.L.; Góźdź, A.; Rostovtsev, V.A.: Symbolic-numeric solution of boundary-value problems for the Schrödinger equation using the finite element method: scattering problem and resonance states (2015)
- Gusev, A.A.; Chuluunbaatar, O.; Vinitsky, S.I.; Abrashkevich, A.G.: POTHEA: a program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined 2D elliptic partial differential equation (2014)
- Gusev, A.A.; Chuluunbaatar, O.; Vinitsky, S.I.; Abrashkevich, A.G.: KANTBP 3.0: new version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach (2014)
- Gusev, A.A.; Vinitsky, S.I.; Chuluunbaatar, O.; Gerdt, V.P.; Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions (2011)
- Gusev, A.A.; Chuluunbaatar, O.; Gerdt, V.P.; Rostovtsev, V.A.; Vinitsky, S.I.; Derbov, V.L.; Serov, V.V.: Symbolic-numeric algorithms for computer analysis of spheroidal quantum dot models (2010)
- Chuluunbaatar, O.; Gusev, A.A.; Vinitsky, S.I.; Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem (2009)
- Vinitsky, S.I.; Chuluunbaatar, O.; Gerdt, V.P.; Gusev, A.A.; Rostovtsev, V.A.: Symbolic-numerical algorithms for solving parabolic quantum well problem with hydrogen-like impurity (2009)
- Chuluunbaatar, O.; Derbov, V.L.; Galtbayar, A.; Gusev, A.A.; Kaschiev, M.S.; Vinitsky, S.I.; Zhanlav, T.: Explicit Magnus expansions for solving the time-dependent Schrödinger equation (2008)
- Chuluunbaatar, O.; Gusev, A.A.; Gerdt, V.P.; Rostovtsev, V.A.; Vinitsky, S.I.; Abrashkevich, A.G.; Kaschiev, M.S.; Serov, V.V.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field (2008)
- Chuluunbaatar, O.; Gusev, A.A.; Vinitsky, S.I.; Abrashkevich, A.G.: KANTBP 2.0: new version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach (2008)
- Chuluunbaatar, Ochbadrakh; Gusev, Alexander; Gerdt, Vladimir; Kaschiev, Michail; Rostovtsev, Vitaly; Samoylov, Valentin; Tupikova, Tatyana; Vinitsky, Sergue: A symbolic-numerical algorithm for solving the eigenvalue problem for a hydrogen atom in the magnetic field: Cylindrical coordinates (2007)
- Chuluunbaatar, O.; Gusev, A.A.; Abrashkevich, A.G.; Amaya-Tapia, A.; Kaschiev, M.S.; Larsen, S.Y.; Vinitsky, S.I.: KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach (2007)