References in zbMATH (referenced in 16 articles )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. D’Amore, Luisa: Remarks on numerical algorithms for computing the inverse Laplace transform (2014)
  2. Fazal, Qaisra; Neumaier, Arnold: Error bounds for initial value problems by optimization (2013)
  3. Chevillard, S.; Harrison, J.; Joldeş, M.; Lauter, Ch.: Efficient and accurate computation of upper bounds of approximation errors (2011)
  4. Rauh, Andreas; Minisini, Johanna; Hofer, Eberhard P.: Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamical systems with uncertainties (2010)
  5. Auer, Ekaterina; Rauh, Andreas; Hofer, Eberhard P.; Luther, Wolfram: Validated modeling of mechanical systems with SmartMOBILE: Improvement of performance by ValEncIA-IVP (2008)
  6. Auer, Ekaterina: Interval modeling of dynamics for multibody systems (2007)
  7. Lin, Youdong; Stadtherr, Mark A.: Validated solutions of initial value problems for parametric ODEs (2007)
  8. Cruz, Jorge: Constraint reasoning for differential models (2005)
  9. Nedialkov, Nedialko S.; Pryce, John D.: Solving differential-algebraic equations by Taylor series. I: Computing Taylor coefficients (2005)
  10. Auer, Ekaterina; Kecskeméthy, Andrés; Tändl, Martin; Traczinski, Holger: Interval algorithms in modeling of multibody systems (2004)
  11. Jackson, Kenneth R.; Nedialkov, Nedialko S.: Some recent advances in validated methods for IVPs for ODEs (2002)
  12. Janssen, Micha; Van Hentenryck, Pascal; Deville, Yves: A constraint satisfaction approach for enclosing solutions to parametric ordinary differential equations (2002)
  13. Röbenack, K.; Reinschke, K.J.: System inversion for nonlinear descriptor systems (2002)
  14. Janssen, Micha; Van Hentenryck, Pascal; Deville, Yves: Optimal pruning in parametric differential equations (2001)
  15. Nedialkov, Nedialko S.; Jackson, Kenneth R.: ODE software that computes guaranteed bounds on the solution (2000)
  16. Nedialkov, Nedialko S.; Jackson, Kenneth R.: An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation (1999)

Further publications can be found at: