Z3 is a high-performance theorem prover being developed at Microsoft Research.Z3 supports linear real and integer arithmetic, fixed-size bit-vectors, extensional arrays, uninterpreted functions, and quantifiers. Z3 is integrated with a number of program analysis, testing, and verification tools from Microsoft Research. These include: VCC, Spec#, Boogie, Pex, Yogi, Vigilante, SLAM, F7, F*, SAGE, VS3, FORMULA, and HAVOC.

References in zbMATH (referenced in 254 articles , 1 standard article )

Showing results 1 to 20 of 254.
Sorted by year (citations)

1 2 3 ... 11 12 13 next

  1. Andrea Callia D’Iddio, Michael Huth: Manyopt: An Extensible Tool for Mixed, Non-Linear Optimization Through SMT Solving (2017) arXiv
  2. Chaudhari, Dipak L.; Damani, Om: Assumption propagation through annotated programs (2017)
  3. Chihani, Zakaria; Marre, Bruno; Bobot, François; Bardin, Sébastien: Sharpening constraint programming approaches for bit-vector theory (2017)
  4. Demirović, Emir; Musliu, Nysret: Modeling high school timetabling with bitvectors (2017)
  5. Dinsdale-Young, Thomas; da Rocha Pinto, Pedro; Andersen, Kristoffer Just; Birkedal, Lars: Caper - automatic verification for fine-grained concurrency (2017)
  6. Esparza, Javier: Advances in parameterized verification of population protocols (2017)
  7. Frohn, Florian; Giesl, Jürgen; Hensel, Jera; Aschermann, Cornelius; Ströder, Thomas: Lower bounds for runtime complexity of term rewriting (2017)
  8. Frumkin, Asya; Feldman, Yotam M.Y.; Lhoták, Ondřej; Padon, Oded; Sagiv, Mooly; Shoham, Sharon: Property directed reachability for proving absence of concurrent modification errors (2017)
  9. Giesl, Jürgen; Aschermann, Cornelius; Brockschmidt, Marc; Emmes, Fabian; Frohn, Florian; Fuhs, Carsten; Hensel, Jera; Otto, Carsten; Plücker, Martin; Schneider-Kamp, Peter; Ströder, Thomas; Swiderski, Stephanie; Thiemann, René: Analyzing program termination and complexity automatically with \ssfAProVE (2017)
  10. Grimmer, Andreas; Clemens, Joachim; Wille, Robert: Formal methods for reasoning and uncertainty reduction in evidential grid maps (2017)
  11. Reynolds, Andrew; Blanchette, Jasmin Christian: A decision procedure for (co)datatypes in SMT solvers (2017)
  12. Ströder, Thomas; Giesl, Jürgen; Brockschmidt, Marc; Frohn, Florian; Fuhs, Carsten; Hensel, Jera; Schneider-Kamp, Peter; Aschermann, Cornelius: Automatically proving termination and memory safety for programs with pointer arithmetic (2017)
  13. Wood, Tim; Drossopolou, Sophia; Lahiri, Shuvendu K.; Eisenbach, Susan: Modular verification of procedure equivalence in the presence of memory allocation (2017)
  14. Zeljić, Aleksandar; Wintersteiger, Christoph M.; Rümmer, Philipp: An approximation framework for solvers and decision procedures (2017)
  15. Zheng, Yunhui; Ganesh, Vijay; Subramanian, Sanu; Tripp, Omer; Berzish, Murphy; Dolby, Julian; Zhang, Xiangyu: Z3str2: an efficient solver for strings, regular expressions, and length constraints (2017)
  16. Zulkoski, Edward; Bright, Curtis; Heinle, Albert; Kotsireas, Ilias; Czarnecki, Krzysztof; Ganesh, Vijay: Combining SAT solvers with computer algebra systems to verify combinatorial conjectures (2017)
  17. Ábrahám, Erika; Abbott, John; Becker, Bernd; Bigatti, Anna M.; Brain, Martin; Buchberger, Bruno; Cimatti, Alessandro; Davenport, James H.; England, Matthew; Fontaine, Pascal; Forrest, Stephen; Griggio, Alberto; Kroening, Daniel; Seiler, Werner M.; Sturm, Thomas: \ssfSC$^2$: satisfiability checking meets symbolic computation. (Project paper) (2016)
  18. Avigad, Jeremy; Lewis, Robert Y.; Roux, Cody: A heuristic prover for real inequalities (2016)
  19. Ballard, Grey; Benson, Austin R.; Druinsky, Alex; Lipshitz, Benjamin; Schwartz, Oded: Improving the numerical stability of fast matrix multiplication (2016)
  20. Bersani, Marcello M.; Rossi, Matteo; San Pietro, Pierluigi: A tool for deciding the satisfiability of continuous-time metric temporal logic (2016)

1 2 3 ... 11 12 13 next