Generalized association plots: Information visualization via iteratively generated correlation matrices Given a p-dimensional proximity matrix D p×p , a sequence of correlation matrices, 𝐑=(R (1) ,R (2) ,⋯), is iteratively formed from it. Here R (1) is the correlation matrix of the original proximity matrix D and R (n) is the correlation matrix of R (n-1) , n>1. This sequence was first introduced by L. L. McQuitty [Multivariate Behav. Res. 3, 465-477 (1968)], and R. L. Breiger, S. A. Boorman and P. Arabie [J. Math. Psychol. 12, 328-383 (1975)] developed an algorithm, CONCOR, based on their rediscovery of its convergence. The sequence 𝐑 often converges to a matrix R (∞) whose elements are +1 or -1. This special pattern of R (∞) partitions the p objects into two disjoint groups and so can be recursively applied to generate a divisive hierarchical clustering tree. While convergence is itself useful, we are more concerned with what happens before convergence. Prior to convergence, we note a rank reduction property with elliptical structure: when the rank of R (n) reaches two, the column vectors of R (n) fall on an ellipse in a two-dimensional subspace. The unique order of relative positions for the p points on the ellipse can be used to solve seriation problems such as the reordering of a Robinson matrix. A software package, Generalized Association Plots (GAP), is developed which utilizes computer graphics to retrieve important information hidden in the data or proximity matrices.