PySP: modeling and solving stochastic programs in Python Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its wide-spread use. One factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of their deterministic counterparts, which are typically formulated first. A second factor relates to the difficulty of solving stochastic programming models, particularly in the mixed-integer, non-linear, and/or multi-stage cases. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times on large-scale problems. We simultaneously address both of these factors in our PySP software package, which is part of the Coopr open-source Python repository for optimization; the latter is distributed as part of IBM’s COIN-OR repository. To formulate a stochastic program in PySP, the user specifies both the deterministic base model (supporting linear, non-linear, and mixed-integer components) and the scenario tree model (defining the problem stages and the nature of uncertain parameters) in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves passing an extensive form to a standard deterministic solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets’ Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for obtaining approximate solutions to multi-stage stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.