BEMLIB is a boundary-element software library of Fortran 77 (compatible with Fortran 90) and Matlab codes accompanying the book by C. Pozrikidis, A Practical Guide to Boundary Element Methods with the software library BEMLIB,” Champan & Hall/CRC, (2002). Chapters 8-12 of the book contain the BEMLIB User Guide. BEMLIB is a distillation of its parental library FDLIB.

References in zbMATH (referenced in 81 articles , 1 standard article )

Showing results 1 to 20 of 81.
Sorted by year (citations)

1 2 3 4 5 next

  1. Grylonakis, E.-N. G.; Filelis-Papadopoulos, C. K.; Gravvanis, G. A.; Fokas, A. S.: An iterative spatial-stepping numerical method for linear elliptic PDEs using the unified transform (2019)
  2. Walker, Benjamin J.; Wheeler, Richard J.; Ishimoto, Kenta; Gaffney, Eamonn A.: Boundary behaviours of \textitLeishmaniamexicana: a hydrodynamic simulation study (2019)
  3. Zieniuk, Eugeniusz; Szerszeń, Krzysztof: A separation between the boundary shape and the boundary functions in the parametric integral equation system for the 3D Stokes equation (2019)
  4. Alinovi, Edoardo; Bottaro, Alessandro: A boundary element method for Stokes flows with interfaces (2018)
  5. Colbrook, Matthew J.; Fokas, Athanasisos S.: Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons (2018)
  6. Hassard, Patrick; Turner, Ian; Farrell, Troy; Lester, Daniel: An efficient boundary element formulation for doubly-periodic two-dimensional Stokes flow with pressure boundary conditions (2018)
  7. Jabbarzadeh, Mehdi; Fu, Henry Chien: Viscous constraints on microorganism approach and interaction (2018)
  8. Karzar-Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter T.: Mobilities of polydisperse hard spheres near a no-slip wall (2018)
  9. Mardanov, R. F.; Zaripov, S. K.: Solution of nonhomogeneous Helmholtz equation with variable coefficient using boundary domain integral method (2018)
  10. Quintero, Enrique S.; Evangelio, A.; Gordillo, J. M.: Production of monodisperse microbubbles avoiding microfluidics (2018)
  11. Smith, David J.: A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation (2018)
  12. Wu, Hao; Ponce de León, Marco Avila; Othmer, Hans G.: Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells (2018)
  13. Zieniuk, Eugeniusz; Szerszeń, Krzysztof: NURBS curves in direct definition of the shapes of the boundary for 2D Stokes flow problems in modified classical BIE (2018)
  14. Das, Debasish; Saintillan, David: A nonlinear small-deformation theory for transient droplet electrohydrodynamics (2017)
  15. Erdmanis, J.; Kitenbergs, G.; Perzynski, R.; Cēbers, A.: Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment (2017)
  16. Korobkin, Alexander; Khabakhpasheva, Tatyana; Rodríguez-Rodríguez, Javier: Initial stage of plate lifting from a water surface (2017)
  17. Pozrikidis, C.: Heat conduction across an array of cylinders (2017)
  18. Ishimoto, Kenta; Cosson, Jacky; Gaffney, Eamonn A.: A simulation study of sperm motility hydrodynamics near fish eggs and spheres (2016)
  19. Lee, T. C.; Long, D. S.; Clarke, R. J.: Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics (2016)
  20. Montenegro-Johnson, T. D.; Baker, D. I.; Smith, D. J.; Lopes, S. S.: Three-dimensional flow in Kupffer’s vesicle (2016)

1 2 3 4 5 next