BEMLIB is a boundary-element software library of Fortran 77 (compatible with Fortran 90) and Matlab codes accompanying the book by C. Pozrikidis, A Practical Guide to Boundary Element Methods with the software library BEMLIB,” Champan & Hall/CRC, (2002). Chapters 8-12 of the book contain the BEMLIB User Guide. BEMLIB is a distillation of its parental library FDLIB.

References in zbMATH (referenced in 90 articles , 1 standard article )

Showing results 1 to 20 of 90.
Sorted by year (citations)

1 2 3 4 5 next

  1. Borker, Neeraj S.; Koch, Donald L.: Slender body theory for particles with non-circular cross-sections with application to particle dynamics in shear flows (2019)
  2. Colbrook, Matthew J.; Fokas, Thanasis S.; Hashemzadeh, Parham: A hybrid analytical-numerical technique for elliptic pdes (2019)
  3. Grylonakis, E.-N. G.; Filelis-Papadopoulos, C. K.; Gravvanis, G. A.; Fokas, A. S.: An iterative spatial-stepping numerical method for linear elliptic PDEs using the unified transform (2019)
  4. Ishimoto, Kenta: Bacterial spinning top (2019)
  5. Walker, Benjamin J.; Wheeler, Richard J.; Ishimoto, Kenta; Gaffney, Eamonn A.: Boundary behaviours of \textitLeishmaniamexicana: a hydrodynamic simulation study (2019)
  6. Zieniuk, Eugeniusz; Szerszeń, Krzysztof: A separation between the boundary shape and the boundary functions in the parametric integral equation system for the 3D Stokes equation (2019)
  7. Alinovi, Edoardo; Bottaro, Alessandro: A boundary element method for Stokes flows with interfaces (2018)
  8. Bradshaw, J. T.; Billingham, John: Thick drops climbing uphill on an oscillating substrate (2018)
  9. Colbrook, Matthew J.; Fokas, Athanasisos S.: Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons (2018)
  10. Hassard, Patrick; Turner, Ian; Farrell, Troy; Lester, Daniel: An efficient boundary element formulation for doubly-periodic two-dimensional Stokes flow with pressure boundary conditions (2018)
  11. Jabbarzadeh, Mehdi; Fu, Henry Chien: Viscous constraints on microorganism approach and interaction (2018)
  12. Karzar-Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter T.: Mobilities of polydisperse hard spheres near a no-slip wall (2018)
  13. Mardanov, R. F.; Zaripov, S. K.: Solution of nonhomogeneous Helmholtz equation with variable coefficient using boundary domain integral method (2018)
  14. Quintero, Enrique S.; Evangelio, A.; Gordillo, J. M.: Production of monodisperse microbubbles avoiding microfluidics (2018)
  15. Smith, David J.: A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation (2018)
  16. Wu, Hao; Ponce de León, Marco Avila; Othmer, Hans G.: Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells (2018)
  17. Zieniuk, Eugeniusz; Szerszeń, Krzysztof: NURBS curves in direct definition of the shapes of the boundary for 2D Stokes flow problems in modified classical BIE (2018)
  18. Das, Debasish; Saintillan, David: A nonlinear small-deformation theory for transient droplet electrohydrodynamics (2017)
  19. Das, Debasish; Saintillan, David: Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations (2017)
  20. Erdmanis, J.; Kitenbergs, G.; Perzynski, R.; Cēbers, A.: Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment (2017)

1 2 3 4 5 next