MACHAR

Numerical software written in high-level languages often relies on machine-dependent parameters to improve portability. MACHAR is an evolving FORTRAN subroutine for dynamically determining thirteen fundamental parameters associated with a floating-point arithmetic system. The version presented here operates correctly on a large number of different floating-points systems, including those implementing the new IEEE Floating-Point standard.


References in zbMATH (referenced in 17 articles , 1 standard article )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Hopkins, Tim: Renovating the collected algorithms from ACM (2002)
  2. Beaumont, Olivier; Erhel, Jocelyne; Philippe, Bernard: Aquarels: A problem-solving environment for validating scientific software (2000)
  3. MacLeod, Allan J.: Algorithm 779: Fermi-Dirac functions of order $-1/2$, $1/2$, $3/2$, $5/2$ (1998)
  4. Sudarsan, R.; Keerthi, S.Sathiya: Numerical approaches for solutions of differential equations on manifolds (1998)
  5. Hull, T.E.; Fairgrieve, Thomas F.; Tang, Ping Tak Peter: Implementing the complex arcsine and arccosine functions using exception handling (1997)
  6. MacLeod, Allan J.: Algorithm 757: MISCFUN, a software package to compute uncommon special functions (1996)
  7. MacLeod, Allan J.: Rational approximations, software and test methods for sine and cosine integrals (1996)
  8. Goano, M.: Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral (1995)
  9. Blom, J.G.; Zegeling, P.A.: Algorithm 731: A moving-grid interface for systems of one-dimensional time-dependent partial differential equations (1994)
  10. Cody, W.J.: Algorithm 715: SPECFUN -- a portable Fortran package of special function routines and test drivers (1993)
  11. Cody, W.J.: Algorithm 714: CELEFUNT -- a portable test package for complex elementary functions (1993)
  12. Erhel, J.; Philippe, B.: AQUARELS: A problem-solving environment for numerical quality (1992)
  13. Cody, W.J.: Performance evaluation of programs related to the real gamma function (1991)
  14. Cody, W.J.; Stoltz, L.: The use of Taylor series to test accuracy of function programs (1991)
  15. Cody, W.J.: Performance evaluation of programs for the error and complementary error functions (1990)
  16. Cody, W.J.; Stoltz, L.: Performance evaluation of programs for certain Bessel functions (1989)
  17. Cody, W.J.: MACHAR: A subroutine to dynamically determine machine parameters (1988)