MATAD

MATAD: A program package for the computation of MAssive TADpoles. The main aim of the present article is to present the program package MATAD which is designed for the computation of MAssive TADpoles at one-, two, and three-loop order. Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADNG. Catalog identifier: ADNG. Multi-loop integrals are needed for evaluation of quantum correction. An important class of loop diagrams is covered by so-called vacuum integrals which have no external momentum. MATAD can analytically compute those one-, two-, and three-loop vacuum integrals where one mass scale is present. The method of integration-by-parts is used in order to obtain recurrence relations which reduce complicated integrals to a small set of so-called master integrals. Furthermore the results for the master integrals are listed and the switches for the input-file are described. A user interface is provided which makes it easy to put in complicated diagrams in a rather compact way. Some explicit examples are discussed and hints for the convenient usage of MATAD are given. (Source: http://cpc.cs.qub.ac.uk/summaries/)


References in zbMATH (referenced in 40 articles , 1 standard article )

Showing results 1 to 20 of 40.
Sorted by year (citations)

1 2 next

  1. Ablinger, J.; Blümlein, J.; De Freitas, A.; Schneider, C.; Schönwald, K.: The two-mass contribution to the three-loop pure singlet operator matrix element (2018)
  2. Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C.-S.; Schneider, C.: Iterated elliptic and hypergeometric integrals for Feynman diagrams (2018)
  3. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Schneider, C.; Wißbrock, F.: Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses (2017)
  4. Chetyrkin, K. G.; Zoller, M. F.: Four-loop renormalization of QCD with a reducible fermion representation of the gauge group: anomalous dimensions and renormalization constants (2017)
  5. Clarke, Jackson D.; Cox, Peter: Naturalness made easy: two-loop naturalness bounds on minimal SM extensions (2017)
  6. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function $F_2(x, Q^2)$ and the anomalous dimension (2015)
  7. Grigo, Jonathan; Hoff, Jens; Steinhauser, Matthias: Higgs boson pair production: top quark mass effects at NLO and NNLO (2015)
  8. Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian: Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms (2014)
  9. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function $\mathrmF_2(\mathrmx, Q^\mathrm2)$ and transversity (2014)
  10. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.: The $O(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element (2014)
  11. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.: The transition matrix element $A_gq(N)$ of the variable flavor number scheme at $O(\alpha_s^3)$ (2014)
  12. Bednyakov, A. V.; Pikelner, A. F.; Velizhanin, V. N.: Three-loop SM beta-functions for matrix Yukawa couplings (2014)
  13. Bednyakov, A. V.; Pikelner, A. F.; Velizhanin, V. N.: Three-loop Higgs self-coupling beta-function in the Standard Model with complex Yukawa matrices (2014)
  14. Kant, Philipp: Finding linear dependencies in integration-by-parts equations: a Monte Carlo approach (2014)
  15. Kara, Dominik: Corrections of order $\alpha\alpha_s$ to $W$ boson decays (2013)
  16. Sturm, Christian: Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED (2013)
  17. Velizhanin, V. N.: Three-loop anomalous dimension of the non-singlet transversity operator in QCD (2012)
  18. Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F.: The $O(\alpha_s^3)$ massive operator matrix elements of $O(n_f)$ for the structure function $F_2(x,Q^2)$ and transversity (2011)
  19. Furlan, Elisabetta: Gluon-fusion Higgs production at NNLO for a non-standard Higgs sector (2011)
  20. Grozin, Andrey G.; Höschele, Maik; Hoff, Jens; Steinhauser, Matthias: Simultaneous decoupling of bottom and charm quarks (2011)

1 2 next