MATSLISE is a graphical MATLAB software package for the interactive numerical study of regular Sturm-Liouville problems, one-dimensional Schrödinger equations, and radial Schrödinger equations with a distorted Coulomb potential. It allows the fast and accurate computation of the eigenvalues and the visualization of the corresponding eigenfunctions. This is realized by making use of the power of high-order piecewise constant perturbation methods, a technique described by Ixaru. For a well-outlined class of problems, the implemented algorithms are more efficient than the well-established SL-solvers SL02f, SLEDGE, SLEIGN, and SLEIGN2, which are included by Pryce in the SLDRIVER code that has been built on top of SLTSTPAK.

References in zbMATH (referenced in 47 articles , 2 standard articles )

Showing results 1 to 20 of 47.
Sorted by year (citations)

1 2 3 next

  1. Kravchenko, Vladislav V.; Torba, Sergii M.; Castillo-Pérez, Raúl: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations (2018)
  2. Mirzaei, Hanif: A family of isospectral fourth order Sturm-Liouville problems and equivalent beam equations (2018)
  3. Zhao, Hou Yu; Fečkan, Michal: Periodic solutions for a class of differential equation with delays depending on state (2018)
  4. Wang, Yu Ping; Shieh, Chung Tsun; Miao, Hong Yi: Inverse transmission eigenvalue problems with the twin-dense nodal subset (2017)
  5. Dehghan, M.: An efficient method to approximate eigenfunctions and high-index eigenvalues of regular Sturm-Liouville problems (2016)
  6. Ledoux, Veerle; Van Daele, Marnix: Matslise 2.0: a Matlab toolbox for Sturm-Liouville computations (2016)
  7. Alıcı, H.; Taşeli, H.: The Laguerre pseudospectral method for the radial Schrödinger equation (2015)
  8. Amodio, Pierluigi; Settanni, Giuseppina: Variable-step finite difference schemes for the solution of Sturm-Liouville problems (2015)
  9. Amodio, Pierluigi; Settanni, Giuseppina: Reprint of “Variable-step finite difference schemes for the solution of Sturm-Liouville problems” (2015)
  10. Kammanee, Athassawat: Derivative-free Broyden’s method for inverse partially known Sturm-Liouville potential functions (2015)
  11. Ramos, Alberto Gil C. P.; Iserles, Arieh: Numerical solution of Sturm-Liouville problems via Fer streamers (2015)
  12. Rundell, William; Sacks, Paul: Inverse eigenvalue problem for a simple star graph (2015)
  13. Kravchenko, Vladislav V.; Torba, Sergii M.: Modified spectral parameter power series representations for solutions of Sturm-Liouville equations and their applications (2014)
  14. Castillo-Pérez, Raúl; Kravchenko, Vladislav V.; Torba, Sergii M.: Spectral parameter power series for perturbed Bessel equations (2013)
  15. Makarov, V. L.; Rossokhata, N. O.; Dragunov, D. V.: An exponentially convergent functional-discrete method for solving Sturm-Liouville problems with a potential including the Dirac (\delta)-function (2013)
  16. Aceto, Lidia; Ghelardoni, Paolo; Magherini, Cecilia: Boundary value methods for the reconstruction of Sturm-Liouville potentials (2012)
  17. Asghar, Saleem; Ahmad, Adeel: On the heat equation with variable properties (applying a WKB method involving turning points) (2012)
  18. Böckmann, Christine; Kammanee, Athassawat: Broyden method for inverse non-symmetric Sturm-Liouville problems (2011)
  19. Ledoux, Veerle; Van Daele, Marnix: On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation (2011)
  20. Alıcı, H.; Taşeli, H.: Pseudospectral methods for solving an equation of hypergeometric type with a perturbation (2010)

1 2 3 next