MATSLISE

MATSLISE is a graphical MATLAB software package for the interactive numerical study of regular Sturm-Liouville problems, one-dimensional Schrödinger equations, and radial Schrödinger equations with a distorted Coulomb potential. It allows the fast and accurate computation of the eigenvalues and the visualization of the corresponding eigenfunctions. This is realized by making use of the power of high-order piecewise constant perturbation methods, a technique described by Ixaru. For a well-outlined class of problems, the implemented algorithms are more efficient than the well-established SL-solvers SL02f, SLEDGE, SLEIGN, and SLEIGN2, which are included by Pryce in the SLDRIVER code that has been built on top of SLTSTPAK.


References in zbMATH (referenced in 41 articles , 1 standard article )

Showing results 1 to 20 of 41.
Sorted by year (citations)

1 2 3 next

  1. Alıcı, H.; Taşeli, H.: The Laguerre pseudospectral method for the radial Schrödinger equation (2015)
  2. Amodio, Pierluigi; Settanni, Giuseppina: Reprint of “Variable-step finite difference schemes for the solution of Sturm-Liouville problems” (2015)
  3. Amodio, Pierluigi; Settanni, Giuseppina: Variable-step finite difference schemes for the solution of Sturm-Liouville problems (2015)
  4. Kammanee, Athassawat: Derivative-free Broyden’s method for inverse partially known Sturm-Liouville potential functions (2015)
  5. Ramos, Alberto Gil C.P.; Iserles, Arieh: Numerical solution of Sturm-Liouville problems via Fer streamers (2015)
  6. Rundell, William; Sacks, Paul: Inverse eigenvalue problem for a simple star graph (2015)
  7. Kravchenko, Vladislav V.; Torba, Sergii M.: Modified spectral parameter power series representations for solutions of Sturm-Liouville equations and their applications (2014)
  8. Castillo-Pérez, Raúl; Kravchenko, Vladislav V.; Torba, Sergii M.: Spectral parameter power series for perturbed Bessel equations (2013)
  9. Makarov, V.L.; Rossokhata, N.O.; Dragunov, D.V.: An exponentially convergent functional-discrete method for solving Sturm-Liouville problems with a potential including the Dirac $\delta$-function (2013)
  10. Aceto, Lidia; Ghelardoni, Paolo; Magherini, Cecilia: Boundary value methods for the reconstruction of Sturm-Liouville potentials (2012)
  11. Asghar, Saleem; Ahmad, Adeel: On the heat equation with variable properties (applying a WKB method involving turning points) (2012)
  12. Böckmann, Christine; Kammanee, Athassawat: Broyden method for inverse non-symmetric Sturm-Liouville problems (2011)
  13. Ledoux, Veerle; Van Daele, Marnix: On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation (2011)
  14. Alıcı, H.; Taşeli, H.: Pseudospectral methods for solving an equation of hypergeometric type with a perturbation (2010)
  15. Broeckhove, Jan; Kłosiewicz, Przemysław; Vanroose, Wim: Applying numerical continuation to the parameter dependence of solutions of the Schrödinger equation (2010)
  16. Gadella, M.; Lara, L.P.: An algebraic method to solve the radial Schrödinger equation (2010)
  17. Ghelardoni, Paolo; Magherini, Cecilia: Bvms for computing Sturm-Liouville symmetric potentials (2010)
  18. Hammerling, Robert; Koch, Othmar; Simon, Christa; Weinmüller, Ewa B.: Numerical solution of singular ODE eigenvalue problems in electronic structure computations (2010)
  19. Hryniv, Rostyslav; Sacks, Paul: Numerical solution of the inverse spectral problem for Bessel operators (2010)
  20. Ledoux, Veerle; van Daele, Marnix; Berghe, Guido Vanden: Efficient numerical solution of the one-dimensional Schrödinger eigenvalue problem using Magnus integrators (2010)

1 2 3 next