mclust

R package mclust: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation , Normal Mixture Modeling fitted via EM algorithm for Model-Based Clustering, Classification, and Density Estimation, including Bayesian regularization.


References in zbMATH (referenced in 162 articles , 1 standard article )

Showing results 1 to 20 of 162.
Sorted by year (citations)

1 2 3 ... 7 8 9 next

  1. Alexander Foss; Marianthi Markatou: kamila: Clustering Mixed-Type Data in R and Hadoop (2018)
  2. Fop, Michael; Murphy, Thomas Brendan: Variable selection methods for model-based clustering (2018)
  3. Galimberti, Giuliano; Manisi, Annamaria; Soffritti, Gabriele: Modelling the role of variables in model-based cluster analysis (2018)
  4. Jeffrey Andrews; Jaymeson Wickins; Nicholas Boers; Paul McNicholas: teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution (2018)
  5. Luca Scrucca; Adrian Raftery: clustvarsel: A Package Implementing Variable Selection for Gaussian Model-Based Clustering in R (2018)
  6. Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna: Initializing the EM algorithm for univariate Gaussian, multi-component, heteroscedastic mixture models by dynamic programming partitions (2018)
  7. Anderson, Craig; Lee, Duncan; Dean, Nema: Spatial clustering of average risks and risk trends in Bayesian disease mapping (2017)
  8. Baumer, Benjamin S.; Kaplan, Daniel T.; Horton, Nicholas J.: Modern data science with R (2017)
  9. Coretto, Pietro; Hennig, Christian: Consistency, breakdown robustness, and algorithms for robust improper maximum likelihood clustering (2017)
  10. Dang, Utkarsh J.; Punzo, Antonio; McNicholas, Paul D.; Ingrassia, Salvatore; Browne, Ryan P.: Multivariate response and parsimony for Gaussian cluster-weighted models (2017)
  11. Djordjilović, Vera; Chiogna, Monica; Vomlel, Jiří: An empirical comparison of popular structure learning algorithms with a view to gene network inference (2017)
  12. Lin, Lin; Li, Jia: Clustering with hidden Markov model on variable blocks (2017)
  13. Lumbreras, Alberto; Velcin, Julien; Guégan, Marie; Jouve, Bertrand: Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models (2017)
  14. Mazo, Gildas: A semiparametric and location-shift copula-based mixture model (2017)
  15. Punzo, Antonio; McNicholas, Paul. D.: Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model (2017)
  16. Saptarshi Chakraborty, Samuel W.K. Wong: BAMBI: An R package for Fitting Bivariate Angular Mixture Models (2017) arXiv
  17. Shaikh, Mateen R.; Beyene, Joseph: Statistical models and computational algorithms for discovering relationships in microbiome data (2017)
  18. Antonio Punzo, Angelo Mazza, Paul D. McNicholas: ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions (2016) arXiv
  19. Athreya, A.; Priebe, C. E.; Tang, M.; Lyzinski, V.; Marchette, D. J.; Sussman, D. L.: A limit theorem for scaled eigenvectors of random dot product graphs (2016)
  20. Azzalini, Adelchi; Menardi, Giovanna: Density-based clustering with non-continuous data (2016)

1 2 3 ... 7 8 9 next