mclust

R package mclust: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation , Normal Mixture Modeling fitted via EM algorithm for Model-Based Clustering, Classification, and Density Estimation, including Bayesian regularization.


References in zbMATH (referenced in 130 articles , 1 standard article )

Showing results 1 to 20 of 130.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Baumer, Benjamin S.; Kaplan, Daniel T.; Horton, Nicholas J.: Modern data science with R (2017)
  2. Dang, Utkarsh J.; Punzo, Antonio; McNicholas, Paul D.; Ingrassia, Salvatore; Browne, Ryan P.: Multivariate response and parsimony for Gaussian cluster-weighted models (2017)
  3. Lumbreras, Alberto; Velcin, Julien; Guégan, Marie; Jouve, Bertrand: Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models (2017)
  4. Saptarshi Chakraborty, Samuel W.K. Wong: BAMBI: An R package for Fitting Bivariate Angular Mixture Models (2017) arXiv
  5. Antonio Punzo, Angelo Mazza, Paul D. McNicholas: ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions (2016) arXiv
  6. Athreya, A.; Priebe, C.E.; Tang, M.; Lyzinski, V.; Marchette, D.J.; Sussman, D.L.: A limit theorem for scaled eigenvectors of random dot product graphs (2016)
  7. Azzalini, Adelchi; Menardi, Giovanna: Density-based clustering with non-continuous data (2016)
  8. Fraiman, Ricardo; Gimenez, Yanina; Svarc, Marcela: Seeking relevant information from a statistical model (2016)
  9. Fraiman, Ricardo; Gimenez, Yanina; Svarc, Marcela: Feature selection for functional data (2016)
  10. Galimberti, Giuliano; Scardovi, Elena; Soffritti, Gabriele: Using mixtures in seemingly unrelated linear regression models with non-normal errors (2016)
  11. Hasnat, Md.Abul; Alata, Olivier; Trémeau, Alain: Model-based hierarchical clustering with Bregman divergences and fishers mixture model: application to depth image analysis (2016)
  12. Kosmidis, Ioannis; Karlis, Dimitris: Model-based clustering using copulas with applications (2016)
  13. Lin, Tsung-I; McLachlan, Geoffrey J.; Lee, Sharon X.: Extending mixtures of factor models using the restricted multivariate skew-normal distribution (2016)
  14. Li, Ying; He, Ye; Zhang, Yu: Analyzing gene expression time-courses based on multi-resolution shape mixture model (2016)
  15. McNicholas, Paul D.: Model-based clustering (2016)
  16. Proïa, Frédéric; Pernet, Alix; Thouroude, Tatiana; Michel, Gilles; Clotault, Jérémy: On the characterization of flowering curves using Gaussian mixture models (2016)
  17. Punzo, Antonio; Ingrassia, Salvatore: Clustering bivariate mixed-type data via the cluster-weighted model (2016)
  18. Punzo, Antonio; McNicholas, Paul D.: Parsimonious mixtures of multivariate contaminated normal distributions (2016)
  19. Bertoletti, Marco; Friel, Nial; Rastelli, Riccardo: Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion (2015)
  20. Bouveyron, Charles; C^ome, Etienne; Jacques, Julien: The discriminative functional mixture model for a comparative analysis of bike sharing systems (2015)

1 2 3 ... 5 6 7 next