SyFi

The finite element package SyFi is a C++ library built on top of the symbolic math library GiNaC. The name SyFi stands for Symbolic Finite Elements. The package provides polygonal domains, polynomial spaces, and degrees of freedom as symbolic expressions that are easily manipulated. This makes it easy to define finite elements. (Source: http://freecode.com/)


References in zbMATH (referenced in 38 articles )

Showing results 1 to 20 of 38.
Sorted by year (citations)

1 2 next

  1. Anker, Felix; Bayer, Christian; Eigel, Martin; Ladkau, Marcel; Neumann, Johannes; Schoenmakers, John: SDE based regression for linear random PDEs (2017)
  2. Arnold, Douglas N.; Li, Lizao: Finite element exterior calculus with lower-order terms (2017)
  3. Avvakumov, A.V.; Strizhov, V.F.; Vabishchevich, P.N.; Vasilev, A.O.: Algorithms for numerical simulation of non-stationary neutron diffusion problems (2017)
  4. Braun, Moritz; Obodo, Kingsley O.: Multi-domain muffin tin finite element density functional calculations for small molecules (2017)
  5. Březina, Jan; Exner, Pavel: Fast algorithms for intersection of non-matching grids using Plücker coordinates (2017)
  6. Chapman, S.J.; Farrell, Patrick E.: Analysis of Carrier’s problem (2017)
  7. Feischl, Michael; Tran, Thanh: The eddy current-LLG equations: FEM-BEM coupling and a priori error estimates (2017)
  8. Lee, Jeonghun J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity (2017)
  9. Maddison, J.R.; Hiester, H.R.: Optimal constrained interpolation in mesh-adaptive finite element modeling (2017)
  10. Pinnau, René; Totzeck, Claudia; Tse, Oliver: The quasi-neutral limit in optimal semiconductor design (2017)
  11. Stepanov, Sergei P.; Sirditov, Ivan K.; Vabishchevich, Petr N.; Vasilyeva, Maria V.; Vasilyev, Vasiliy I.; Tceeva, Anastasiya N.: Numerical simulation of heat transfer of the pile foundations with permafrost (2017)
  12. Vabishchevich, Petr N.: A singularly perturbed boundary value problems with fractional powers of elliptic operators (2017)
  13. Dolean, V.; Gander, M.J.; Kheriji, W.; Kwok, F.; Masson, R.: Nonlinear preconditioning: how to use a nonlinear Schwarz method to precondition Newton’s method (2016)
  14. Girouard, A.; Laugesen, R. S.; Siudeja, B. A.: Steklov eigenvalues and quasiconformal maps of simply connected planar domains (2016)
  15. Kulczycki, Tadeusz; Kwaśnicki, Mateusz; Siudeja, Bartłomiej: The shape of the fundamental sloshing mode in axisymmetric containers (2016)
  16. Lee, Jeonghun J.: Robust error analysis of coupled mixed methods for Biot’s consolidation model (2016)
  17. Metti, Maximilian S.; Xu, Jinchao; Liu, Chun: Energetically stable discretizations for charge transport and electrokinetic models (2016)
  18. Römer, Ulrich; Schöps, Sebastian; Weiland, Thomas: Stochastic modeling and regularity of the nonlinear elliptic curl-curl equation (2016)
  19. Vasylyeva, Nataliya; Overko, Vitalii: The Hele-Shaw problem with surface tension in the case of subdiffusion (2016)
  20. Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André: CutFEM: discretizing geometry and partial differential equations (2015)

1 2 next