The finite element package SyFi is a C++ library built on top of the symbolic math library GiNaC. The name SyFi stands for Symbolic Finite Elements. The package provides polygonal domains, polynomial spaces, and degrees of freedom as symbolic expressions that are easily manipulated. This makes it easy to define finite elements. (Source:

References in zbMATH (referenced in 24 articles )

Showing results 1 to 20 of 24.
Sorted by year (citations)

1 2 next

  1. Anker, Felix; Bayer, Christian; Eigel, Martin; Ladkau, Marcel; Neumann, Johannes; Schoenmakers, John: SDE based regression for linear random pdes (2017)
  2. Chapman, S.J.; Farrell, Patrick E.: Analysis of Carrier’s problem (2017)
  3. Feischl, Michael; Tran, Thanh: The eddy current-LLG equations: FEM-BEM coupling and a priori error estimates (2017)
  4. Lee, Jeonghun J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity (2017)
  5. Dolean, V.; Gander, M.J.; Kheriji, W.; Kwok, F.; Masson, R.: Nonlinear preconditioning: how to use a nonlinear Schwarz method to precondition Newton’s method (2016)
  6. Girouard, A.; Laugesen, R. S.; Siudeja, B. A.: Steklov eigenvalues and quasiconformal maps of simply connected planar domains (2016)
  7. Kulczycki, Tadeusz; Kwaśnicki, Mateusz; Siudeja, Bartłomiej: The shape of the fundamental sloshing mode in axisymmetric containers (2016)
  8. Metti, Maximilian S.; Xu, Jinchao; Liu, Chun: Energetically stable discretizations for charge transport and electrokinetic models (2016)
  9. Römer, Ulrich; Schöps, Sebastian; Weiland, Thomas: Stochastic modeling and regularity of the nonlinear elliptic curl-curl equation (2016)
  10. Vasylyeva, Nataliya; Overko, Vitalii: The Hele-Shaw problem with surface tension in the case of subdiffusion (2016)
  11. Kirby, Robert C.; Kieu, Thinh Tri: Symplectic-mixed finite element approximation of linear acoustic wave equations (2015)
  12. Li, Jiao; Xie, Dexuan: A new linear Poisson-Boltzmann equation and finite element solver by solution decomposition approach (2015)
  13. Vasylyeva, Nataliya; Vynnytska, Lyudmyla: On a multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study (2015)
  14. Vynnytska, Lyudmyla; Bunge, Hans-Peter: Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions (2015)
  15. Alexe, Mihai; Sandu, Adrian: Space-time adaptive solution of inverse problems with the discrete adjoint method (2014)
  16. Alnæs, Martin S.; Logg, Anders; Ølgaard, Kristian B.; Rognes, Marie E.; Wells, Garth N.: Unified form language: a domain-specific language for weak formulations of partial differential equations (2014)
  17. Vabishchevich, Peter N.; Vasil’eva, Mariya V.; Gornov, Viktor F.; Pavlova, Nataliya V.: Mathematical modeling of the artificial freezing of soils (2014)
  18. Di Pietro, Daniele A.; Gratien, Jean-Marc; Prud’homme, Christophe: A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes (2013)
  19. Rognes, Marie E.; Logg, Anders: Automated goal-oriented error control. I: Stationary variational problems (2013)
  20. Abali, B.E.; Völlmecke, C.; Woodward, B.; Kashtalyan, M.; Guz, I.; Müller, W.H.: Numerical modeling of functionally graded materials using a variational formulation (2012)

1 2 next