Getfem++

The Getfem project focuses on the development of a generic and efficient library for finite element methods. The library can be used from C++, Python, and Matlab. The library includes numerous Finite Elements and associated tools such as assembly procedures for classical problems, interpolation methods, computation of norms, mesh operations (including automatic refinement), boundary conditions, post-processing, and more. Numerous examples are provided. (Source: http://freecode.com/)


References in zbMATH (referenced in 32 articles )

Showing results 1 to 20 of 32.
Sorted by year (citations)

1 2 next

  1. Walker, Shawn W.: FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling (2018)
  2. Airiau, Christophe; Buchot, Jean-Marie; Dubey, Ritesh Kumar; Fournié, Michel; Raymond, Jean-Pierre; Weller-Calvo, Jessie: Stabilization and best actuator location for the Navier-Stokes equations (2017)
  3. Lehrenfeld, Christoph; Reusken, Arnold: High order unfitted finite element methods for interface problems and PDEs on surfaces (2017)
  4. Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh: How attention influences perceptual decision making: single-trial EEG correlates of drift-diffusion model parameters (2017)
  5. Bodart, Olivier; Cayol, Valérie; Court, Sébastien; Koko, Jonas: XFEM-based fictitious domain method for linear elasticity model with crack (2016)
  6. Pozzolini, Cédric; Renard, Yves; Salaün, Michel: Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles (2016)
  7. Vtorushin, Egor V.: Application of mixed finite elements to spatially non-local model of inelastic deformations (2016)
  8. Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André: CutFEM: discretizing geometry and partial differential equations (2015)
  9. El-Kurdi, Yousef; Dehnavi, Maryam Mehri; Gross, Warren J.; Giannacopoulos, Dennis: Parallel finite element technique using Gaussian belief propagation (2015)
  10. Amdouni, Saber; Moakher, Maher; Renard, Yves: A local projection stabilization of fictitious domain method for elliptic boundary value problems (2014)
  11. Amdouni, S.; Moakher, M.; Renard, Y.: A stabilized Lagrange multiplier method for the enriched finite-element approximation of Tresca contact problems of cracked elastic bodies (2014)
  12. Ligurský, Tomáš; Renard, Yves: A continuation problem for computing solutions of discretised evolution problems with application to plane quasi-static contact problems with friction (2014)
  13. González-Albuixech, Vicente F.; Giner, Eugenio; Tarancón, José E.; Fuenmayor, F. Javier; Gravouil, Anthony: Domain integral formulation for 3-D curved and non-planar cracks with the extended finite element method (2013)
  14. Pozzolini, Cédric; Renard, Yves; Salaün, Michel: The singular dynamic method for dynamic contact of thin elastic structures (2013)
  15. Kronbichler, Martin; Kormann, Katharina: A generic interface for parallel cell-based finite element operator application (2012)
  16. Prud’homme, Christophe; Chabannes, Vincent; Doyeux, Vincent; Ismail, Mourad; Samake, Abdoulaye: Feel++: a computational framework for Galerkin methods and advanced numerical methods (2012)
  17. Bangerth, Wolfgang; Burstedde, Carsten; Heister, Timo; Kronbichler, Martin: Algorithms and data structures for massively parallel generic adaptive finite element codes (2011)
  18. Chahine, Elie; Laborde, Patrick; Renard, Yves: A non-conformal extended finite element approach: integral matching Xfem (2011)
  19. Ngom, Mouhamadou; Sy, Alassane; Faye, Ibrahima; Seck, Diaraf: Study of phononic and photonic crystal problems by topological optimization method (2011)
  20. Olson, Luke N.; Schroder, Jacob B.; Tuminaro, Raymond S.: A general interpolation strategy for algebraic multigrid using energy minimization (2011)

1 2 next